Elmbridge Borough Council

Level 1 Strategic Flood Risk Assessment (SFRA)

May 2015

47069767

UNITED KINGDOM & IRELAND

Prepared for:

Elmbridge Borough Council
... bringing the communities ...
<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Details</th>
<th>Prepared by</th>
<th>Reviewed by</th>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>May 2014</td>
<td>1st Draft</td>
<td>Sarah Littlewood Consultant</td>
<td>Sarah Kelly Principal Consultant</td>
<td>Jon Robinson Operations Director</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Edward Byers Consultant</td>
<td>Tom Hargreaves Associate Director</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neil Mackenzie Principal Hydrogeologist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Aug 2014</td>
<td>2nd Draft including comments from Elmbridge BC and Environment Agency</td>
<td>Sarah Littlewood Consultant</td>
<td>Sarah Kelly Principal Consultant</td>
<td>Jon Robinson Operations Director</td>
</tr>
<tr>
<td>3</td>
<td>Dec 2014</td>
<td>Final Draft Report including comments from Elmbridge BC</td>
<td>Sarah Littlewood Consultant</td>
<td>Sarah Kelly Principal Consultant</td>
<td>Michael Timmins Technical Director</td>
</tr>
<tr>
<td>4</td>
<td>May 2015</td>
<td>Final Issue including consultation comments</td>
<td>Sarah Littlewood Consultant</td>
<td>Emily Craven Principal Consultant</td>
<td>Michael Timmins Technical Director</td>
</tr>
</tbody>
</table>
Limitations

URS Infrastructure & Environment UK Limited ("URS") has prepared this Report for the sole use of Elmbridge Borough Council ("Client") in accordance with the Agreement under which our services were performed ("Elmbridge Borough Council Conditions of Contract: Contract for Strategic Flood Risk Assessment SFRA 2013 (December 2013)" and URS Quotation of Services 'ElmbridgeBC_Quotation_of_Services_2014-01-09.pdf'). No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by URS.

The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by URS has not been independently verified by URS, unless otherwise stated in the Report.

The methodology adopted and the sources of information used by URS in providing its services are outlined in this Report. The work described in this Report was undertaken between February and May 2015 and is based on the conditions encountered and the information available during the said period of time. The scope of this Report and the services are accordingly factually limited by these circumstances.

Where assessments of works or costs identified in this Report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

URS disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to URS’ attention after the date of the Report.

Certain statements made in the Report that are not historical facts may constitute estimates, projections or other forward-looking statements and even though they are based on reasonable assumptions as of the date of the Report, such forward-looking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. URS specifically does not guarantee or warrant any estimate or projections contained in this Report.

Copyright

© This Report is the copyright of URS Infrastructure & Environment UK Limited. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBREVIATIONS</td>
<td>5</td>
</tr>
<tr>
<td>GLOSSARY OF TERMS</td>
<td>6</td>
</tr>
<tr>
<td>1 INTRODUCTION AND USER GUIDE</td>
<td>8</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Approach to Flood Risk Management</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Purpose of the SFRA</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Flood Risk Policy and Guidance</td>
<td>10</td>
</tr>
<tr>
<td>1.5 User Guide</td>
<td>11</td>
</tr>
<tr>
<td>1.6 Living Document</td>
<td>13</td>
</tr>
<tr>
<td>2 METHODOLOGY</td>
<td>14</td>
</tr>
<tr>
<td>2.1 Overview</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Consultation</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Data Collection</td>
<td>16</td>
</tr>
<tr>
<td>3 ASSESSING FLOOD RISK</td>
<td>28</td>
</tr>
<tr>
<td>3.1 Overview</td>
<td>28</td>
</tr>
<tr>
<td>3.2 Area</td>
<td>28</td>
</tr>
<tr>
<td>3.3 Character</td>
<td>29</td>
</tr>
<tr>
<td>3.4 Topography</td>
<td>29</td>
</tr>
<tr>
<td>3.5 Geology</td>
<td>29</td>
</tr>
<tr>
<td>3.6 Aquifers</td>
<td>30</td>
</tr>
<tr>
<td>3.7 Groundwater Vulnerability</td>
<td>30</td>
</tr>
<tr>
<td>3.8 Main Rivers</td>
<td>30</td>
</tr>
<tr>
<td>3.9 Ordinary Watercourses</td>
<td>31</td>
</tr>
<tr>
<td>3.10 Flooding from Rivers</td>
<td>31</td>
</tr>
<tr>
<td>3.11 Flooding from Land</td>
<td>37</td>
</tr>
<tr>
<td>3.12 Flooding from Groundwater</td>
<td>38</td>
</tr>
<tr>
<td>3.13 Flooding from Sewers</td>
<td>38</td>
</tr>
<tr>
<td>3.14 Flooding from Reservoirs</td>
<td>39</td>
</tr>
<tr>
<td>4 AVOIDING FLOOD RISK</td>
<td>41</td>
</tr>
<tr>
<td>4.1 Sequential Approach</td>
<td>41</td>
</tr>
<tr>
<td>4.2 Applying Sequential Test – Plan-Making</td>
<td>41</td>
</tr>
<tr>
<td>4.3 Applying Sequential Test – Planning Applications</td>
<td>45</td>
</tr>
<tr>
<td>4.4 Exception Test</td>
<td>46</td>
</tr>
<tr>
<td>5 MANAGING AND MITIGATING FLOOD RISK</td>
<td>49</td>
</tr>
<tr>
<td>5.1 Overview</td>
<td>49</td>
</tr>
<tr>
<td>5.2 Development Layout and Sequential Approach</td>
<td>49</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>5.3</td>
<td>Finished Floor Levels</td>
</tr>
<tr>
<td>5.4</td>
<td>Flood Resistance ‘Water Exclusion Strategy’</td>
</tr>
<tr>
<td>5.5</td>
<td>Flood Resilience ‘Water Entry Strategy’</td>
</tr>
<tr>
<td>5.6</td>
<td>Safe Access and Egress</td>
</tr>
<tr>
<td>5.7</td>
<td>Floodplain Compensation Storage</td>
</tr>
<tr>
<td>5.8</td>
<td>Flood Routing</td>
</tr>
<tr>
<td>5.9</td>
<td>Safe Access and Egress</td>
</tr>
<tr>
<td>5.10</td>
<td>Surface Water Management</td>
</tr>
<tr>
<td>5.11</td>
<td>Flood Warning and Evacuation Plans</td>
</tr>
<tr>
<td>6</td>
<td>GUIDANCE FOR SITE-SPECIFIC FRAS</td>
</tr>
<tr>
<td>6.1</td>
<td>What is a Flood Risk Assessment?</td>
</tr>
<tr>
<td>6.2</td>
<td>When is a Flood Risk Assessment required?</td>
</tr>
<tr>
<td>6.3</td>
<td>How detailed should a FRA be?</td>
</tr>
<tr>
<td>6.4</td>
<td>What needs to be addressed in a Flood Risk Assessment?</td>
</tr>
<tr>
<td>6.5</td>
<td>Flood Risk Assessment Checklist</td>
</tr>
<tr>
<td>6.6</td>
<td>Pre-application Advice</td>
</tr>
<tr>
<td>7</td>
<td>FLOOD RISK POLICY AND DEVELOPMENT MANAGEMENT APPROACH</td>
</tr>
<tr>
<td>7.1</td>
<td>Overview</td>
</tr>
<tr>
<td>7.2</td>
<td>Policy Approach</td>
</tr>
<tr>
<td>7.3</td>
<td>Development Management Measures</td>
</tr>
<tr>
<td></td>
<td>APPENDIX A DATA REGISTER</td>
</tr>
<tr>
<td></td>
<td>APPENDIX B BOROUGH SCALE MAPPING</td>
</tr>
<tr>
<td></td>
<td>APPENDIX C FLUVIAL FLOOD ZONE MAPPING</td>
</tr>
<tr>
<td></td>
<td>APPENDIX D SURFACE WATER FLOOD RISK MAPPING</td>
</tr>
<tr>
<td></td>
<td>APPENDIX E SETTLEMENT AREA SCHEDULES</td>
</tr>
<tr>
<td></td>
<td>APPENDIX F SAMPLE SITE ASSESSMENTS</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

<table>
<thead>
<tr>
<th>ACRONYM</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOD</td>
<td>Above Ordnance Datum</td>
</tr>
<tr>
<td>AIMS</td>
<td>Asset Information Management System</td>
</tr>
<tr>
<td>BGS</td>
<td>British Geological Survey</td>
</tr>
<tr>
<td>CFMP</td>
<td>Catchment Flood Management Plan</td>
</tr>
<tr>
<td>CLG</td>
<td>(Department for) Communities and Local Government</td>
</tr>
<tr>
<td>Defra</td>
<td>Department for Environment, Flood and Rural Affairs</td>
</tr>
<tr>
<td>EBC</td>
<td>Elmbridge Borough Council</td>
</tr>
<tr>
<td>FRA</td>
<td>Flood Risk Assessment</td>
</tr>
<tr>
<td>FWMA</td>
<td>Flood and Water Management Act 2010</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>LiDAR</td>
<td>Light Detection and Ranging</td>
</tr>
<tr>
<td>LLFA</td>
<td>Lead Local Flood Authority</td>
</tr>
<tr>
<td>LPA</td>
<td>Local Planning Authority</td>
</tr>
<tr>
<td>LRF</td>
<td>Local Resilience Forum</td>
</tr>
<tr>
<td>PPG</td>
<td>Planning Practice Guidance</td>
</tr>
<tr>
<td>NPPF</td>
<td>National Planning Policy Framework</td>
</tr>
<tr>
<td>RAMSAR</td>
<td>RAMSAR Sites</td>
</tr>
<tr>
<td>RTD</td>
<td>River Terrace Deposits</td>
</tr>
<tr>
<td>S&G</td>
<td>Sand and Gravel</td>
</tr>
<tr>
<td>SCC</td>
<td>Surrey County Council</td>
</tr>
<tr>
<td>SFRA</td>
<td>Strategic Flood Risk Assessment</td>
</tr>
<tr>
<td>SPA</td>
<td>Special Protection Area</td>
</tr>
<tr>
<td>SPD</td>
<td>Supplementary Planning Document</td>
</tr>
<tr>
<td>SPZ</td>
<td>Source Protection Zone</td>
</tr>
<tr>
<td>SuDS</td>
<td>Sustainable Drainage Systems</td>
</tr>
<tr>
<td>SSSI</td>
<td>Site of Special Scientific Interest</td>
</tr>
<tr>
<td>uFMFSW</td>
<td>Updated Flood Map for Surface Water</td>
</tr>
</tbody>
</table>
Glossary of Terms

<table>
<thead>
<tr>
<th>Glossary</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D Hydraulic Model</td>
<td>Hydraulic model which computes flow in a single dimension, suitable for representing systems with a defined flow direction such as river channels, pipes, and culverts</td>
</tr>
<tr>
<td>2D Hydraulic Model</td>
<td>Hydraulic model which computes flow in multiple dimensions, suitable for representing systems without a defined flow direction including topographic surfaces such as floodplains</td>
</tr>
<tr>
<td>Asset Information Management System (AIMS)</td>
<td>Environment Agency database of assets associated with Main Rivers including defences, structures and channel types. Information regarding location, standard of service, dimensions and condition.</td>
</tr>
<tr>
<td>Aquifer</td>
<td>A source of groundwater comprising water bearing rock, sand or gravel capable of yielding significant quantities of water.</td>
</tr>
<tr>
<td>Attenuation</td>
<td>In the context of this report - the storing of water to reduce peak discharge of water.</td>
</tr>
<tr>
<td>Catchment Flood Management Plan</td>
<td>A high-level plan through which the Environment Agency works with their key decision makers within a river catchment to identify and agree policies to secure the long-term sustainable management of flood risk.</td>
</tr>
<tr>
<td>Climate Change</td>
<td>Long term variations in global temperature and weather patterns caused by natural and human actions. For fluvial events a 20% increase in river flow is applied and for rainfall events, a 30% increase. These climate change values are based upon information within the NPPF and Planning Practice Guidance.</td>
</tr>
<tr>
<td>Culvert</td>
<td>A channel or pipe that carries water below the level of the ground.</td>
</tr>
<tr>
<td>Design flood</td>
<td>A flood event of a given annual probability against which the suitability of a proposed development is assessed and mitigation measures, if any, are designed. The design event is generally taken as; fluvial flooding likely to occur with a 1% annual probability (1 in 100 chance each year), or tidal flooding with a 0.5% annual probability (1 in 200 chance each year).</td>
</tr>
<tr>
<td>DG5 Register</td>
<td>A water-company held register of properties which have experienced sewer flooding due to hydraulic overload, or properties which are ‘at risk’ of sewer flooding more frequently than once in 20 years.</td>
</tr>
<tr>
<td>Exception Test</td>
<td>The exception test should be applied following the application of the sequential test. Conditions need to be met before the exception test can be applied.</td>
</tr>
<tr>
<td>Flood Defence</td>
<td>Infrastructure used to protect an area against floods, such as floodwalls and embankments; they are designed to a specific standard of protection (design standard).</td>
</tr>
<tr>
<td>Flood Resilience</td>
<td>Measures that minimise water ingress and promotes fast drying and easy cleaning, to prevent any permanent damage.</td>
</tr>
<tr>
<td>Flood Resistant</td>
<td>Measures to prevent flood water entering a building or damaging its fabric. This has the same meaning as flood proof.</td>
</tr>
<tr>
<td>Flood Risk</td>
<td>The level of flood risk is the product of the frequency or likelihood of the flood events and their consequences (such as loss, damage, harm, distress and disruption).</td>
</tr>
<tr>
<td>Flood Zone</td>
<td>Flood Zones show the probability of flooding, ignoring the presence of existing defences.</td>
</tr>
<tr>
<td>Fluvial</td>
<td>Relating to the actions, processes and behaviour of a watercourse (river or stream).</td>
</tr>
<tr>
<td>Freeboard</td>
<td>Height of flood defence crest level (or building level) above designed water level.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Functional Floodplain</td>
<td>Land where water has to flow or be stored in times of flood.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Water that is in the ground, this is usually referring to water in the saturated zone below the water table.</td>
</tr>
<tr>
<td>ISIS</td>
<td>A 1D hydraulic modelling software package.</td>
</tr>
<tr>
<td>Lead Local Flood Authority (LLFA)</td>
<td>As defined by the Flood and Water Management Act, in relation to an area in England, this means the unitary authority or where there is no unitary authority, the county council for the area, in this case Surrey County Council.</td>
</tr>
<tr>
<td>Light Detection and Ranging (LiDAR)</td>
<td>Airborne ground survey mapping technique, which uses a laser to measure the distance between the aircraft and the ground.</td>
</tr>
<tr>
<td>Local Planning Authority (LPA)</td>
<td>Body that is responsible for controlling planning and development through the planning system.</td>
</tr>
<tr>
<td>Main River</td>
<td>Watercourse defined on a ‘Main River Map’ designated by Defra. The Environment Agency has permissive powers to carry out flood defence works, maintenance and operational activities for Main Rivers only.</td>
</tr>
<tr>
<td>Mitigation measure</td>
<td>An element of development design which may be used to manage flood risk or avoid an increase in flood risk elsewhere.</td>
</tr>
<tr>
<td>Ordinary Watercourse</td>
<td>A watercourse that does not form part of a Main River. This includes “all rivers and streams and all ditches, drains, cuts, culverts, dikes, sluices (other than public sewers within the meaning of the Water Industry Act 1991) and passages, through which water flows” according to the Land Drainage Act 1991.</td>
</tr>
<tr>
<td>Ramsar Site</td>
<td>Wetlands of international importance, designated under the Ramsar Convention</td>
</tr>
<tr>
<td>Residual Flood Risk</td>
<td>The remaining flood risk after risk reduction measures have been taken into account.</td>
</tr>
<tr>
<td>Risk</td>
<td>Risk is a factor of the probability or likelihood of an event occurring multiplied by consequence: Risk = Probability x Consequence. It is also referred to in this report in a more general sense.</td>
</tr>
<tr>
<td>Sequential Test</td>
<td>Aims to steer vulnerable development to areas of lowest flood risk.</td>
</tr>
<tr>
<td>Sewer Flooding</td>
<td>Flooding caused by a blockage or overflowing in a sewer or urban drainage system.</td>
</tr>
<tr>
<td>Source Protection Zone (SPZ)</td>
<td>Defined areas in which certain types of development are restricted to ensure that groundwater sources remain free from contaminants.</td>
</tr>
<tr>
<td>Surface Water</td>
<td>Flooding caused when intense rainfall exceeds the capacity of the drainage systems or when, during prolonged periods of wet weather, the soil is so saturated such that it cannot accept any more water.</td>
</tr>
<tr>
<td>Sustainable drainage systems (SuDS)</td>
<td>Methods of management practices and control structures that are designed to drain surface water in a more sustainable manner than some conventional techniques.</td>
</tr>
<tr>
<td>Topographic survey</td>
<td>A survey of ground levels.</td>
</tr>
<tr>
<td>TUFLOW</td>
<td>A modelling package for simulating depth averaged 2D free-surface flows and is in widespread use in the UK and elsewhere for 2D inundation modelling.</td>
</tr>
</tbody>
</table>
INTRODUCTION AND USER GUIDE

1.1 Introduction

1.1.1 In its role as the Local Planning Authority (LPA), Elmbridge Borough Council (BC) is currently preparing documents that will form part of the Elmbridge Local Plan and set the vision for future development across the Borough over the next 15 years.

1.1.2 Elmbridge BC faces the challenge of meeting the need for new development within areas already identified to be at risk of river (fluvial) flooding associated with a number of different watercourses including the Thames, Mole, Ember, Rythe and Wey. Furthermore, there is the potential risk arising from more localised flooding from surface water generated by heavy rainfall, elevated groundwater, existing drainage systems as well as artificial sources including several reservoirs.

1.1.3 The severity of the flood risk in Elmbridge from both rivers and surface water was illustrated during the events of December 2013 and January/February 2014 with areas such as East and West Molesey, Cobham, Thames Ditton, Weybridge and Walton-on-Thames specifically affected.

1.2 Approach to Flood Risk Management

1.2.1 The National Planning Policy Framework (NPPF) and associated Planning Practice Guidance (PPG) for Flood Risk and Coastal Change emphasise the active role LPAs such as Elmbridge BC should take to ensure that flood risk is assessed, avoided, and managed effectively and sustainably throughout all stages of the planning process. The overall approach for the consideration of flood risk set out in Section 1 of the NPPG can be summarised as follows:

Assess flood risk → Avoid flood risk → Manage & Mitigate flood risk

1.2.2 This has implications for LPAs and developers as described below.

Assess flood risk

1.2.3 The NPPF outlines that Local Plans should be supported by a Strategic Flood Risk Assessment (SFRA) and LPAs should use the findings to inform strategic land use planning. Figure 1-1 overleaf, reproduced from the NPPG, illustrates how flood risk should be taken into account in the preparation of the Local Plan by Elmbridge BC.

1.2.4 For sites in areas at risk of flooding, or with an area of 1 hectare or greater, developers must undertake a site-specific Flood Risk Assessment (FRA) to accompany planning applications (or prior approval for certain types of permitted development).

Avoid flood risk

1.2.5 Elmbridge BC should apply the sequential approach to site selection so that development is, as far as reasonably possible, located where the risk of flooding from all sources is lowest, taking account of climate change and the vulnerability of future users to flood risk.

1.2.6 In plan-making this involves applying the Sequential Test, and where necessary the Exception Test to Local Plans, as described in Figure 1-1.

1.2.7 In decision-taking this involves applying the Sequential Test and if necessary the Exception Test for specific development proposals.

Manage and mitigate flood risk

1.2.8 Where alternative sites in areas at lower risk of flooding are not available, it may be necessary to locate development in areas at risk of flooding. In these cases, Elmbridge BC and developers must ensure that development is appropriately flood resilient and resistant, safe for its users for the lifetime of the development, and will not increase flood risk overall. Elmbridge BC and developers should seek flood risk management opportunities (e.g. safeguarding land), and to reduce the causes and impacts of flooding (e.g. through the use of sustainable drainage systems).

Figure 1-1 Taking flood risk into account in the preparation of a Local Plan (PPG for Flood Risk and Coastal Change, p6)
1.3 Purpose of the SFRA

1.3.1 The purpose of this SFRA is to collate and present the most up to date flood risk information for use by Elmbridge BC to inform the preparation of the Elmbridge Local Plan and prudent decision-making by Development Management officers on a day-to-day basis.

1.3.2 In order to achieve this, the SFRA will:

- Refine information on the areas that may flood taking into account all sources of flooding and the impacts of climate change;
- Inform the Sustainability Appraisal process, so that flood risk is fully taken into account;
- Inform the application of the Sequential and, if necessary, Exception Tests in the allocation of future development sites, as required by the NPPF, and planning application process;
- Identify the requirements for site-specific Flood Risk Assessments;
- Inform the preparation of flood risk policy and guidance;
- Determine the acceptability of flood risk in relation to emergency planning capability; and,
- Consider opportunities to reduce flood risk to existing communities and developments through better management of surface water, provision for conveyance and storage for flood water.

1.3.3 This document forms a Level 1 SFRA which has been carried out to support the completion of the Sequential Test by Elmbridge BC and inform the allocation of sites within the Local Plan. Documents recording the application of the Sequential Test will be published as a separate document on the Council’s website. Should the Sequential Test indicate that land outside flood risk areas cannot appropriately accommodate all necessary development; a further Level 2 SFRA will be undertaken to consider the detailed nature of flood risk within each zone and support the application of the Exception Test.

1.4 Flood Risk Policy and Guidance

1.4.1 There is an established body of policy and guidance documents which are of particular importance when considering development and flood risk. These are identified in Table 1-1.

Table 1-1 Flood Risk Policy and Guidance Documents

<table>
<thead>
<tr>
<th>Policy Documents</th>
<th>http</th>
</tr>
</thead>
</table>
1.5 User Guide

1.5.1 It is anticipated that the SFRA will have a number of end users, with slightly different requirements. This Section describes how the SFRA should be used and how to navigate the report and mapping deliverables.

1.5.2 The Elmbridge BC SFRA report is set out as follows:

- Methodology
- Assessing Flood Risk
- Avoiding Flood Risk
- Managing and Mitigating Flood Risk
- Guidance for Site-Specific FRAs
- Spatial Planning and Development Control Recommendations
- Appendix A Data Register
- Appendix B Borough Scale Mapping
- Appendix C Fluvial Flood Zone Mapping
- Appendix D Surface Water Flood Risk Mapping
- Appendix E Settlement Area Schedules
- Appendix F Sample Site Assessments

Strategic Planning and Policy

1.5.3 The chief purpose of the SFRA for Elmbridge BC, in accordance with the NPPF, is to provide a strategic overview of flood risk within the Borough to enable effective risk-based strategic planning for the future through the preparation of the Local Plan. As part of the SFRA, a number of policy recommendations and development management measures have been prepared to inform the development of the Elmbridge Local Plan and in day-to-day decision making.
Applying the Sequential Test

1.5.4 The NPPF sets strict tests to protect people and property from flooding which all LPAs are expected to follow. The aim of the Sequential Test under the NPPF is to steer new development to areas with the lowest probability of flooding. Section 3 and the supporting mapping Appendices B – D provides the data required to undertake the Sequential Test and Section 4 provides specific guidance on applying both the Sequential and where appropriate, Exception Tests.

Emergency Planning

1.5.5 Elmbridge BC is a Category 1 Responder under the Civil Contingencies Act 2004\(^3\) and therefore has a responsibility, along with other organisations, for developing emergency plans, contingency plans and business continuity plans to help reduce, control or ease the effects of an emergency.

1.5.6 The complex nature of flooding and the consequences that arise require a comprehensive and often sustained response from a wide range of organisations, and as such Elmbridge BC has prepared a Multi-Agency Flood Plan\(^4\) (MAFP) to allow all responding parties to work together on an agreed coordinated response to severe flooding.

1.5.7 The SFRA deliverables, particularly Section 3 and the Settlement Area schedules in Appendix E, can be used by the Elmbridge BC Emergency Planning team as a useful resource providing up to date information about flood risk. The SFRA should be reviewed by the team to ensure that the findings are incorporated into their understanding of flood risk and future revisions of the MAFP.

Preparing site-specific Flood Risk Assessments

1.5.8 For those preparing site-specific Flood Risk Assessments (FRAs) for individual development sites, the strategic review provided by the SFRA provides a useful starting point.

- Section 4 provides guidance on the application of the Sequential Test for sites that have not been tested by the LPA, as well as details on when the Exception Test is required and how to apply it.

- Section 5 provides guidance on flood risk mitigation and management measures that should be considered for individual developments and Section 6 provides guidance for preparing site-specific FRAs including when FRAs are required and what they should address depending on the scale of development and level of flood risk.

- The Settlement Area schedules in Appendix E provide an overview of the key issues within each Settlement Area and set the tone for the approach to flood risk management that is required by Elmbridge BC.

- Appendix F provides sample assessments for 5 sample development sites across Elmbridge and identifies the issues that would need to be addressed further as part of a site-specific FRA.

Assessing Planning Applications

1.5.9 Planning and development officers who are reviewing FRAs as part of the planning application process should consult Appendix E of the SFRA to provide the background for flood risk in a particular Settlement Area. Sections 5 and 6 and Table 7-1 build on the guidance presented

\(^3\) HMSO 2004 Civil Contingencies Act 2004.

in the PPG and Environment Agency Standing Advice and can be used by those assessing applications as a checklist for issues that need to be addressed as part of site-specific FRAs.

1.6 Living Document

1.6.1 This SFRA has been developed building heavily upon existing knowledge with respect to flood risk within the Borough. The Environment Agency review and update the Flood Map for Planning (Rivers and Sea)\(^5\) on a quarterly basis and a rolling programme of detailed flood risk mapping is underway. The Environment Agency is currently developing a new model for the River Rythe and remodelling the Lower Thames between Hurley and Teddington and the Middle Mole. This will improve the current knowledge of flood risk within the Borough, and may marginally alter predicted flood extents within parts of the Borough in the future.

1.6.2 New information may influence future development control decisions within these areas. Therefore it is important that the SFRA is adopted as a ‘living’ document and is reviewed regularly in light of emerging policy directives, flood risk datasets and an improving understanding of flood risk within the Borough.

\(^5\) Refer to Section 3.3 for further detail.
2 METHODOLOGY

2.1 Overview

2.1.1 Under Section 10 of NPPF, the risk of flooding from all sources must be considered as part of an SFRA, including flooding from rivers (fluvial), land (overland flow and surface water), groundwater, sewers and artificial sources. Flooding from the sea is not relevant to the study area.

2.1.2 The methodology for the appraisal of flood risk from these sources is outlined below; Section 2.2 describes the approach to consultation and identifies the stakeholder organisations that have been involved, Section 2.3 provides a description of the datasets used to assess the risk of flooding from each source, further details of which are included within the data register in Appendix A.

2.2 Consultation

Duty to Cooperate

2.2.1 Under the Localism Act 2011, there is now a legal duty on LPAs to co-operate with one another, County Councils and other Prescribed Bodies to maximise the effectiveness within which certain activities are undertaken as far as they relate to a ‘strategic matter’.

2.2.2 In complying with the duty to cooperate, Government Guidance recommends that LPAs ‘scope’ the strategic matters of Local Plan documents at the beginning of the preparation process taking account of each matters ‘functional geography’ and identify those LPAs and Prescribed Bodies that need to be constructively and actively engaged.

2.2.3 The Council prepared and consulted on a Scoping Statement as part of the background work required to prepare the Elmbridge Local Plan. Flood risk is identified as a strategic matter and specific engagement activities are proposed with a number of adjoining LPAs and Prescribed Bodies both in relation to the preparation of the SFRA and the Local Plan. Before commencing work on the SFRA, Elmbridge BC also explored the potential for undertaking the work jointly with adjoining Boroughs.

Consultation Plan

2.2.4 As part of the SFRA, an internal Consultation Plan was prepared for the project team which documents the proposed approach for collaborative working amongst relevant organisations throughout the preparation of the SFRA. The Plan identifies the stakeholder organisations and sets out their roles and responsibilities with respect to the preparation of the SFRA. A summary is provided in Table 2-1.

2.2.5 The Plan details the process for collection of data and transfer of SFRA deliverables. The Plan also sets out the intention of Elmbridge BC to consult with a number of organisations on the draft SFRA deliverables, including adjoining LPAs and specific Prescribed Bodies, in accordance with the Scoping Statement.

Table 2-1 SFRA Stakeholder Organisations and Roles

<table>
<thead>
<tr>
<th>Stakeholder Organisation</th>
<th>Role with respect to the Elmbridge BC SFRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elmbridge BC</td>
<td>As a LPA Elmbridge BC has a responsibility to consider flood risk in their strategic land use planning and the development of their Local Plan. The NPPF requires LPAs to undertake a SFRA and to use their findings, and those of other studies, to inform strategic land use planning including the application of the Sequential Test which seeks to steer development towards areas of lowest flood risk prior to consideration of areas of greater risk. Elmbridge BC is also required to consider flood risk and, when necessary, apply the Sequential and Exception Tests when assessing applications for development. During the preparation of the SFRA, Elmbridge BC has provided access to available datasets held by the Council regarding flood risk across the Borough. The SFRA will be used by the Elmbridge BC Emergency Planning team to ensure that the findings are incorporated into their understanding of flood risk and the preparation of their Multi-Agency Flood Plan (MAFP).</td>
</tr>
<tr>
<td>Environment Agency</td>
<td>The Environment Agency is responsible for managing the risk of flooding from Main Rivers and the sea and has a responsibility to provide a strategic overview for all flooding sources and coastal erosion. The Environment Agency has a role to provide technical advice to LPAs and developers on how best to avoid, manage and reduce the adverse impacts of flooding. Part of this role involves advising on the preparation of spatial plans, sustainability appraisals and evidence base documents, including SFRAs as well as providing advice on higher risk planning applications. The Environment Agency undertakes systematic modelling and mapping of fluvial flood risk associated with all Main Rivers in the study area, as well as supporting Lead Local Flood Authorities (LLFA) with the management of surface water flooding by mapping surface water flood risk across England. The Environment Agency has supplied available datasets for use within the SFRA. The Environment Agency has been involved in the commissioning of the SFRA and has performed a technical review role of the draft project deliverables. The administrative area of Elmbridge BC is served by two Environment Agency areas; the West Thames Area which covers the eastern part of the Borough including the Rivers Wey and Thames and the Kent and South London Area which serves the remainder of the Borough, including the Rivers Mole, Ember, Rythe, Dead River and Fairmile Ditch.</td>
</tr>
<tr>
<td>Surrey County Council (SCC)</td>
<td>As the LLFA, under the Flood and Water Management Act (FWMA) SCC has a duty to take the lead in the coordination of local flood risk management, specifically defined as flooding from surface water, groundwater and ordinary watercourses and to this end has prepared the Local Flood Risk Management Strategy (LFRMS) for Surrey⁸. SCC is responsible for regulation and enforcement on ordinary watercourses and is a statutory consultee for future sustainable drainage systems (SuDS) for major developments in the county, following changes to the Town and Country Planning (Development Management Procedures) (England) Order 2015. SCC is the Highways Authority and therefore has responsibilities for the effectual drainage of surface water from adopted roads insofar as ensuring that drains, including kerbs, road gullies and ditches and the pipe network which connect to the sewers, are</td>
</tr>
</tbody>
</table>

Stakeholder Organisation
Role with respect to the Elmbridge BC SFRA

Stakeholder Organisation	**Role with respect to the Elmbridge BC SFRA**
SCC (Surrey County Council) | As such, SCC is a key stakeholder in the preparation of the SFRA. SCC has provided current datasets in relation to the assessment of local sources of flooding (surface water, groundwater and ordinary watercourses), has been consulted on the draft project deliverables and will be involved in the implementation of any policy outcomes with respect to sustainable drainage or ordinary watercourse management.
Thames Water Utilities Ltd (TWUL) | Thames Water Utilities Ltd (TWUL) is responsible for surface water drainage from development via adopted sewers and for maintaining public sewers into which much of the highway drainage connects. In relation to the SFRA, the main role that TWUL will play is providing data regarding past sewer flooding.
Highways Agency | Under the Highways Act 1980, the Highways Agency has responsibilities for the effectual drainage of surface water from adopted roads along red routes insofar as ensuring that drains, including kerbs, road gullies and ditches and the pipe network which connect to the sewers, are maintained. In relation to the SFRA, the Highways Agency was consulted to provide details of any known historic and recent flood risks along the highways in the Borough, areas that are susceptible to flooding, flood mitigation measures that have already been put in place and maintenance regimes.
Network Rail | Network Rail were consulted to provide details of any known historic and recent flood risks across their infrastructure routes in the Borough, areas that are susceptible to flooding, flood mitigation measures that have already been put in place and maintenance regimes.
British Geological Survey (BGS) | BGS hold a number of datasets that have informed the SFRA, including superficial and bedrock geology, susceptibility to groundwater flooding and suitability of infiltration SuDS.
Neighbouring LPAs | The following LPAs adjoin Elmbridge BC and will be consulted on the draft report; Guildford Borough Council, Mole Valley District Council, London Borough of Richmond upon Thames, London Borough of Kingston upon Thames, Runnymede Borough Council, Spelthorne Borough Council, Woking Borough Council.
Other consultees | In accordance with the Duty to Cooperate Scoping Report, the following organisations will also be consulted on the draft project deliverables; Local Nature Partnership London, Local Nature Partnership Surrey, River Mole Catchment Partnership, River Thames Alliance, Wey Landscape Partnership, Greater London Authority, Enterprise M3 and the Royal Borough of Windsor and Maidenhead.

2.3 Data Collection

2.3.1 LiDAR Topographic Survey

The following information and datasets have been made available by the stakeholder organisations and used to inform the assessment of flood risk from each of the sources. Further details are provided in Appendix A.

LiDAR Topographic Survey

2.3.2 LiDAR Topographic Survey

Appendix B Figure B1 shows the topography of the Borough based on LiDAR data and provides a useful basis for understanding surface water flood risk in the area.

2.3.3 LiDAR Topographic Survey

Light Detection and Ranging (LiDAR) is an airborne mapping technique, which uses a laser to measure the distance between the aircraft and the ground. Up to 100,000 measurements per second are made of the ground, allowing highly detailed terrain models to be generated at spatial resolutions of between 25cm and 2 metres. The data covering Elmbridge has a spatial...
resolution of 1m. The Environment Agency’s LiDAR data archive contains digital elevation data derived from surveys carried out since 1998.

Appendix B, Figure B1

Detailed River Network

2.3.4 The Environment Agency ‘Detailed River Network’ dataset has been used to identify watercourses in the study area and their designation (i.e. Main River or Ordinary Watercourse).

Appendix B, Figure B4
Appendix C, Figures C1-C13

Highways Drainage Ditches

SCC has provided a GIS layer detailing highways drainage ditches in the study area. These are included in Appendix B Figure B4 and Appendix D Figures D1-D13.

Appendix B, Figure B4
Appendix D, Figures D1-D13

‘Flood Map for Planning (Rivers and Sea)’

The risk of flooding is a function of the probability that a flood will occur and the consequence to the community or receptor as a direct result of flooding. The NPPF seeks to assess the probability of flooding from rivers by categorising areas within the fluvial floodplain into zones of low, medium and high probability, as defined in Table 2-2 and presented on the Flood Map for Planning (Rivers and Sea) available on the Environment Agency website. These Flood Zones have been presented in Figures C1 – C13.

Table 2-2 Fluvial Flood Zones (extracted from the PPG, 2014)

<table>
<thead>
<tr>
<th>Flood Zone</th>
<th>Flood Zone Definition for River Flooding</th>
<th>Probability of Flooding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Zone 1</td>
<td>Land having a less than 1 in 1,000 chance of river flooding each year (0.1% annual probability). Shown as clear on the Flood Map – all land outside Flood Zones 2 and 3.</td>
<td>Low</td>
</tr>
<tr>
<td>Flood Zone 2</td>
<td>Land having between a 1 in 100 and 1 in 1,000 chance of river flooding each year (between 1% and 0.1% annual probability).</td>
<td>Medium</td>
</tr>
<tr>
<td>Flood Zone 3a</td>
<td>Land having a 1 in 100 or greater chance of river flooding each year (greater than 1% annual probability).</td>
<td>High</td>
</tr>
<tr>
<td>Flood Zone 3b</td>
<td>Land where water has to flow or be stored in times of flood, or land purposely designed to be flooded in an extreme flood event (0.1% annual probability). Defined by the LPA. Not separately distinguished from Flood Zone 3a on the Flood Map for Planning (Rivers and Sea).</td>
<td>Functional Floodplain</td>
</tr>
</tbody>
</table>
2.3.5 The ‘Flood Map for Planning (Rivers and the Sea)’ provides information on the areas that would flood if there were no flood defences or buildings in the “natural” floodplain. The ‘Flood Map for Planning (Rivers and Sea)’ dataset is available on the Environment Agency website and is the main reference for planning purposes as it contains the Flood Zones which are referred to in the NPPF.

2.3.6 The ‘Flood Map for Planning (Rivers and Sea)’ was first developed in 2004 using national generalised modelling (JFLOW) and is routinely updated and revised using results from the Environment Agency’s ongoing programme of river catchment studies. The studies can include topographic surveys and hydrological and/or hydraulic modelling as well as incorporating information from recorded flood events.

Appendix C, Figures C1-C13

2.3.7 It should be noted that a separate map is available on the Environment Agency website which is referred to as ‘Risk of Flooding from Rivers and Sea’. This map takes into account the presence of flood defences and so describes the actual chance of flooding, rather than the chance if there were no defences present. While flood defences reduce the level of risk they do not completely remove it as they can be overtopped or fail in extreme weather conditions, or if they are in poor condition. As a result the maps may show areas behind defences which still have some risk of flooding. This mapping has been made available by the Environment Agency as the primary method of communicating flood risk to members of the public, however for planning purposes the ‘Flood Map for Planning (Rivers and the Sea)’ and associated Flood Zones remains the primary source of information.

Hydraulic Modelling Studies

2.3.8 Table 2-3 provides a summary of the hydraulic modelling studies that have been undertaken for the Main Rivers in Elmbridge and used to inform the Flood Map for Planning (Rivers and Sea). The type of model (1D or 2D) is also specified, along with the corresponding available outputs for each model.

Table 2-3 Hydraulic models for Main Rivers in Elmbridge

<table>
<thead>
<tr>
<th>Watercourse</th>
<th>Modelling Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle Mole (From Sidlow in Reigate to Esher railway bridge)</td>
<td>Mott MacDonald, Environment Agency Thames Region, (December 2007) Middle Mole Flood Mapping Study Final Report. Available outputs: flood extent, flood depth, and velocity for each annual probability event.</td>
</tr>
</tbody>
</table>

NB: The Environment Agency is currently remodelling this section of the Main Mole.

### Watercourse	Modelling Study
River Mole |
Dead River | JBA Consulting, Environment Agency Thames Region (April 2013) Dead River and Surbiton Stream Flood Risk Mapping Study.
1D-2D model. Available outputs: flood extent, flood depth, velocity and hazard rating for each annual probability event.

Lower Thames (Hurley to Teddington) | PBA, Jacobs, Atkins, Environment Agency Thames Region (November 2007) Lower Thames Flood Risk Mapping Project TH724 Hydraulic Modelling Report Issue No. 5.1.
1D-2D model. Available outputs: flood extent, flood depth, and velocity for each annual probability event.
NB: The Environment Agency is currently remodelling this section of the River Thames. It is anticipated that the Flood Map for Planning (Rivers and Sea) will be updated with the results of this modelling in April 2015.

River Rythe | The Environment Agency is currently undertaking a modelling study for the River Rythe; however the results are not available to inform this version of the SFRA. The Flood Map for Planning (Rivers and Sea) will be updated when the results are available.

2.3.9
It should be noted that the scope of these modelling studies typically covers flooding associated with Main Rivers, and therefore Ordinary Watercourses that form tributaries to the Main Rivers may not always be included in the model. Modelling of Ordinary Watercourses available on the Flood Map for Planning (Rivers and Sea) may be the result of the national generalised JFLOW modelling carried out by the Environment Agency and may need to be refined when determining the probability of flooding for an individual site and preparing a site-specific FRA. Further detail is provided in Section 6.3.

Appendix D, Figures C1-C13

Functional Floodplain (Flood Zone 3b)

2.3.10 The Functional Floodplain is defined in the NPPF as ‘land where water has to flow or be stored in times of flood’. The Functional Floodplain (also referred to as Flood Zone 3b), is not separately distinguished from Flood Zone 3a on the Flood Map for Planning. Rather the SFRA is the place where LPAs should identify areas of Functional Floodplain in discussion with the Environment Agency.

2.3.11 The PPG states that the identification of Functional Floodplain should take account of local circumstances and not be defined solely on rigid probability parameters. However, land which would naturally flood with an annual probability of 1 in 20 (5%) or greater in any year, or is designed to flood (such as a flood attenuation scheme) in an extreme (0.1% annual probability) flood, should provide a starting point for consideration. The guidance goes on to say that ‘areas which would naturally flood with an annual probability of 1 in 20 or greater, but are prevented from doing so by existing infrastructure or solid buildings will not normally be defined as functional floodplain’.

2.3.12 Areas with an annual probability of 1 in 20 (5%) or greater flood extents have been delineated. Within this outline, undeveloped areas, where water has to flow or be stored in times of flood, are defined as functional floodplain and protected from non-compatible development. In Elmbridge there are some areas within the 1 in 20 (5%) or greater flood extent that are already...
developed and are prevented from flooding by the presence of existing infrastructure or solid buildings. Whilst these areas will be subject to frequent flooding, it may not be practical to refuse all future development. As such, and in accordance with the PPG, existing building footprints, where they can be demonstrated to exclude floodwater, will not be defined as Functional Floodplain. The land surrounding these buildings are important flow paths and flood storage areas and properties within these areas will be subject to frequent flooding; therefore care must be given to the future sustainability of such development.

2.3.13 The approach to development within these areas recognises the importance of pragmatic planning solutions that will not unnecessarily ‘blight’ areas of existing development, the importance of the undeveloped land surrounding them and the potential opportunities to reinstate areas which can operate as functional floodplain through redevelopment to provide space for floodwater and reduce risk to new and existing development.

Flood Zone 3b in Elmbridge

Land with an annual probability of flooding of 5% (1 in 20 year) associated with the River Thames, Wey, Mole and Dead River has been used by Elmbridge BC as a starting point for defining the Functional Floodplain and presented in Appendix C Figures C1-C13. Modelling of the 5% annual probability (1 in 20 year) flood event for the River Rythe is not currently available but should also be used when published.

Flood Zone 3b– Functional Floodplain

The Functional Floodplain as defined in this SFRA by Elmbridge BC comprises undeveloped land within the 5% annual probability (1 in 20 year) flood outline. These areas should be safeguarded from any development. Where Water Compatible or Essential Infrastructure cannot be located elsewhere, it must:

- Remain operational and safe for users in times of flood;
- Result in no net loss of flood storage;
- Not impede water flows; and
- Not increase flood risk elsewhere.

Within the outline of the 5% annual probability (1 in 20 year) flood outline there are areas of existing development which are prevented from flooding by the presence of existing infrastructure or solid buildings. In these developed areas, existing building footprints, where it can be demonstrated that they exclude floodwater, will not be defined as Functional Floodplain and the planning requirements associated with Flood Zone 3b will not apply. As a guide, these areas include:

- Brooklands Road and Brooklands Museum, Weybridge;
- Wey Road, Weybridge;
- Felix Lane, Walton-on-Thames;
- Wheatley’s Eyot, Walton-on-Thames;
- Beasley’s Ait Lane, Walton-on-Thames;
- Immediately upstream of Sunbury Weir, Walton-on-Thames;
- Garrick’s Eyot, East and West Molesey; and
- Thames Ditton Island, Thames Ditton.
The land surrounding these buildings are important flow paths and flood storage areas and properties within these areas will be subject to frequent flooding; therefore care must be given to the future sustainability of such development.

Where redevelopment is proposed in developed areas, schemes should not increase the vulnerability classification of the site. All schemes must result in a net reduction in flood risk and ensure that floodplain storage and flow routes are not affected. This can be achieved through a combination of on and off-site measures including:

- Reducing the land use vulnerability;
- Seeking opportunities to ensure there is no increase or achieve a reduction in the number of people at risk (e.g. avoiding conversions and rebuilds of properties that result in an increase in the number of residential dwellings);
- Maintaining or reducing built footprint
- Raising finished floor levels;
- Reducing surface water runoff rates and volumes from the site;
- Increasing floodplain storage capacity and creating space for flooding to occur by restoring functional floodplain;
- Reducing impedance to floodwater flow and restoring flood flow paths;
- Incorporating flood resilient and/or resistance measures;

Ensuring development remains safe for users in time of flood (this may refer to the timely evacuation of properties prior to the onset of flooding in accordance with an individual Flood Warning and Evacuation Plan for the site).

Proposals for the change of use or conversion to a use with a higher vulnerability classification will not be permitted.

Basement, basement extensions or conversions of basements to a higher vulnerability classification will not be permitted.

Where minor development is proposed, schemes should not affect floodplain storage or flow routes through the incorporation of raised finished floor levels, voids, and where possible the provision of direct or indirect floodplain compensation, flood resilience measures, the removal of other non-floodable structures or replacement of impermeable surfaces with permeable and improved surface water drainage through the implementation of SuDS features such as water butts/rainwater harvesting, living roofs, infiltration trenches/soakaways and below ground attenuation tanks in line with CIRIA guidance on SuDS.

The consideration of whether a site is ‘developed’ or ‘undeveloped’ will be considered on a case-by-case basis as part of the planning application process, having regard to the presence of existing buildings on the site and the existing routing of floodwater through the site during times of flood.

Climate Change

2.3.14 A considerable amount of research is being carried out worldwide in an endeavour to quantify the impacts that climate change is likely to have on flooding in future years. Climate change may increase peak rainfall intensity and river flow, which could result in more frequent and severe flood events. Climate change is perceived to represent an increasing risk to low lying areas of England, and it is anticipated that the frequency and severity of flooding will change measurably within our lifetime.
2.3.15 Recommended contingency allowances for net sea level rises, and recommended national precautionary sensitivity ranges for peak rainfall intensity, peak river flow, offshore wind speed and wave height suitable for use in the planning system are derived from Department for Environment, Food and Rural Affairs FCMDPAG3 Economic Appraisal Supplementary Note to Operating Authorities – Climate Change Impacts, October 200611 and presented in Table 2-4 and Table 2-5.

Table 2-4 Recommended contingency allowances for net sea level rises (Net sea level rise (mm per year) relative to 1990)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1990 to 2025</th>
<th>2025 to 2055</th>
<th>2055 to 2085</th>
<th>2085 to 2115</th>
</tr>
</thead>
<tbody>
<tr>
<td>East of England, east midlands, London, south-east England (south of Flamborough Head)</td>
<td>4.0</td>
<td>8.5</td>
<td>12.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Table 2-5 Recommended national precautionary sensitivity ranges for peak rainfall intensity, peak river flow, offshore wind speed and wave height

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1990 to 2025</th>
<th>2025 to 2055</th>
<th>2055 to 2085</th>
<th>2085 to 2115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak rainfall intensity</td>
<td>+5%</td>
<td>+10%</td>
<td>+20%</td>
<td>+30%</td>
</tr>
<tr>
<td>Peak river flow</td>
<td>+10%</td>
<td>+20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore wind speed</td>
<td>+5%</td>
<td></td>
<td>+10%</td>
<td></td>
</tr>
<tr>
<td>Extreme wave height</td>
<td>+5%</td>
<td></td>
<td>+10%</td>
<td></td>
</tr>
</tbody>
</table>

2.3.16 As part of the hydraulic modelling studies for the fluvial watercourses in Elmbridge, simulations have been run for the 1% annual probability (1 in 100 year) including the implications of climate change based on these allowances. It should be noted that whilst the modelling of the annual probability events to generate the NPPF Flood Zones (and Flood Map for Planning) do not account for the presence of flood defences, the simulations including an allowance for climate change do include the presence of existing flood defences. These simulations are available for the Lower Thames, River Wey, Dead River, Lower Mole and Middle Mole. This information is not currently available for the River Rythe but will be available upon completion of the Environment Agency modelling study for the River Rythe.

Appendix C, Figures C1-C13

‘Updated Flood Map for Surface Water’

2.3.17 The Environment Agency has undertaken modelling of surface water flood risk at a national scale and produced mapping identifying those areas at risk of surface water flooding during three probability events: 3.33% annual probability (1 in 30 year), 1% annual probability (1 in 100 year) and 0.1% annual probability (1 in 1,000 year). The latest version of the mapping is referred to as the ‘updated Flood Map for Surface Water’ (uFMfSW) and the extents have been made available to Elmbridge BC as GIS layers. This dataset is also available nationally

11 This document has now been superseded by Environment Agency Adapting to Climate Change: Advice for flood and coastal erosion risk management authorities, July 2011, but the allowances are considered suitable for use in the planning system. Further information can be found on the Environment Agency standing advice pages here: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/296964/LIT_8496_5306da.pdf
on the Environment Agency website, and is referred to as ‘Risk of Flooding from Surface Water’.

Appendix D, Figures D1-D13

2.3.18 The uFMfSW provides all relevant stakeholders, such as the Environment Agency, Elmbridge BC, SCC (as the LLFA) and the public access to information on surface water flood risk which is consistent across England and Wales. The modelling helps the Environment Agency take a strategic overview of flooding, and assists SCC in their duties relating to management of surface water flood risk and the preparation of the Local Flood Risk Management Strategy. For the purposes of this SFRA, the mapping allows an improved understanding of areas within Elmbridge BC administrative area which may be at risk of flooding from surface water.

2.3.19 The modelling represents a significant improvement on previous mapping, namely the FMfSW (2010) and the Areas Susceptible to Surface Water Flooding (ASTSWF) (2009), for example:

- Increased model resolution to 2m grid,
- Representation of buildings and flow routes along roads and manual editing of the model for structural features such as flyovers,
- Use of a range of storm scenarios, and
- Incorporation of appropriate local mapping, knowledge and flood incident records.

2.3.20 However, it should be noted that this national mapping has the following limitations:

- Use of a single drainage rate for all urban areas,
- It does not show the susceptibility of individual properties to surface water flooding,
- The mapping has significant limitations for use in flat catchments,
- No explicit modelling of the interaction between the surface water network, the sewer systems and watercourses,
- In a number of areas, modelling has not been validated due to a lack of surface water flood records, and
- As with all models, the uFMfSW is affected by a lack of, or inaccuracies, in available data.

Preliminary Flood Risk Assessment

2.3.21 The Preliminary Flood Risk Assessment (PFRA) prepared by SCC in accordance with the requirements of the Flood Risk Regulations 2009 provides a high level review of flooding across the County and identifies areas of significant surface water flood risk based on a broad scale national dataset.

Geology and Groundwater Datasets

2.3.22 Table 2-6 details the datasets that were supplied for the SFRA by the Environment Agency and the British Geological Survey (BGS) regarding the underlying geology, the presence of groundwater and the risk of groundwater flooding.

12 Environment Agency Flood Risk from Surface Water Map http://watermaps.environment-agency.gov.uk/wiyby/wiyby.aspx?&topic=ufmfsw#x=357683&y=355134&scale=2
Table 2-6 Geology and Groundwater Flood Risk Datasets

<table>
<thead>
<tr>
<th>Source</th>
<th>Dataset Title</th>
<th>Figure No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Superficial geology (British Geological Survey)</td>
<td>Figure B3</td>
</tr>
<tr>
<td>2</td>
<td>Bedrock geology (British Geological Survey)</td>
<td>Figure B4</td>
</tr>
<tr>
<td>3</td>
<td>Aquifer Type (Environment Agency)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Groundwater Vulnerability Classification (Environment Agency)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Groundwater Source Protection Zones (Environment Agency)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Susceptibility to Groundwater Flooding (BGS)</td>
<td>Figure B5</td>
</tr>
<tr>
<td>7</td>
<td>SuDS drainage potential – depths to water table (BGS)</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>SuDS drainage potential – infiltration constraints summary (BGS)</td>
<td>Figure B6</td>
</tr>
<tr>
<td>9</td>
<td>SuDS drainage potential – drainage summary (BGS)</td>
<td>Figure B6</td>
</tr>
</tbody>
</table>

2.3.23 In order to provide a strategic assessment of the risk of groundwater flooding in Elmbridge, the following two stage assessment was undertaken using the data sources in Table 2-6.

2.3.24 The initial stage included a review of the GIS layers of the BGS superficial geology (Source 1) and bedrock geology (Source 2), the Environment Agency aquifer type (Source 3), groundwater vulnerability (Source 4) and source protection zones maps (Source 5). The next stage was to use the GIS layer produced by the BGS showing areas susceptible to groundwater flooding (Source 6) on the basis of geological and hydrogeological conditions. A description of each of these datasets is provided below.

Geology (Sources 1 and 2)

2.3.25 The BGS datasets provide a high level identification of the superficial deposits and bedrock geology across the Borough. Bedrock is the consolidated rock underlying the ground surface. Superficial deposits refer to the more geologically recent deposits (typically of Quaternary age) that may be present above the bedrock such as floodplain deposits, beach sands and glacial drift.

Aquifer Type (Source 3)

2.3.26 Aquifers are underground layers of water-bearing permeable rock or drift deposits from which groundwater can be extracted. The Environment Agency datasets have been used to identify the presence of aquifers within Elmbridge to inform the understanding of sources of groundwater and the potential for related groundwater flood risk.

Groundwater Vulnerability Classification (Source 4)

2.3.27 Groundwater Vulnerability Classifications are an Environment Agency dataset that broadly show the extents of aquifers in the Borough. Where aquifers are highly vulnerable, they often have a more permeable covering and, together with dry valley and watercourse networks, potential groundwater flooding areas can be identified.

Source Protection Zone (Source 5)

2.3.28 The Environment Agency defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. Due to the strategic nature of this report, Environment Agency records of
smaller abstractions have not been reviewed at this stage. Understanding of potentially vulnerable groundwater sources can be important when selecting appropriate SuDS for a particular area, refer to Section 5.10 for further information.

Susceptibility to Groundwater Flooding (Source 6)

2.3.29 ‘Susceptibility to Groundwater Flooding’ is a dataset produced by the BGS showing areas susceptible to groundwater flooding (Source 6) on the basis of geological and hydrogeological conditions. This layer is divided into three classes – High, Medium and Low risk. The highest risk areas are those with the potential for groundwater flooding to occur at the surface, medium risk are those which may experience groundwater flooding of property situated below the ground surface i.e. basements; and low risk are those with limited potential for groundwater flooding to occur.

Appendix B, Figure B5

Infiltration SuDS Suitability (Sources 7, 8 and 9)

2.3.30 The BGS has also produced a dataset of infiltration SuDS suitability mapping. The GIS layers from this dataset that were used included ‘Depth to Water Table’ (Source 7), ‘Infiltration Constraints Summary’ (Source 8) and ‘Drainage Summary’ (Source 9) identifying areas with very significant constraints, areas with opportunities for bespoke infiltration SuDS and areas probably compatible for infiltration SuDS and areas thought to be highly compatible for infiltration SuDS), as described further below.

2.3.31 Highly compatible: The subsurface is likely to be suitable for free-draining infiltration SuDS.

2.3.32 Probably compatible for infiltration SuDS: The subsurface is probably suitable for infiltration SuDS, although design may be influenced by the ground conditions.

2.3.33 Opportunities for bespoke infiltration SuDS: The subsurface is potentially suitable for infiltration SuDS although the design will be influenced by the ground conditions.

2.3.34 Very significant constraints are indicated: There is a very significant potential for one or more geohazards associated with infiltration.

Appendix B, Figure B6

Ordnance Survey Mapping

2.3.35 Surface water bodies within the Borough have been identified from a review of the Ordnance Survey (OS) 1:10,000 scale mapping. Water bodies have been identified that are 0.01km² or greater.

‘Risk of Flooding from Reservoirs’

2.3.36 The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ identifies areas that could be flooded if a large reservoir were to fail and release the water it holds. This dataset has been reviewed on the Environment Agency website to inform the SFRA.

Historic Flooding Records

2.3.37 Records of past flood incidents have been provided by a number of the stakeholder organisations for use within the SFRA. The quality of this information is varied as described in

15 A large reservoir is one that holds over 25,000 cubic metres of water, equivalent to approximately 10 Olympic sized swimming pools.
Table 2-7. It is noted that no historic records of groundwater flooding have been provided by any of the stakeholders as part of the SFRA.

Table 2-7 Historic Datasets

<table>
<thead>
<tr>
<th>Source</th>
<th>Description / Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elmbridge BC</td>
<td>Identification of 33 road locations where there have been incidents of flooding during the years 1970, 1987, 1988, 1993, 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2003 and 2014. This data does not identify whether the flooding was internal or external (i.e. flooding of gardens) or the exact source of flooding. However all the locations are in close proximity to Main Rivers and therefore the source is assumed to be fluvial flooding from Main Rivers. This dataset is included on Figures C1-C13 (Appendix C) and the road names are listed in Appendix A. It should be noted that references to road names, and the mapping in Appendix A does not mean the whole road has experienced flooding.</td>
</tr>
<tr>
<td>Environment Agency</td>
<td>The Environment Agency has provided an extract from their historic flooding database. The database includes records of confirmed and unconfirmed reports of flooding. These incidents are from the years 2000, 2003 and 2014 and provide details of the source and date of occurrence. Properties on 9 roads in the Borough were affected. The Environment Agency have also provided a GIS layer of the historic flood map which shows the extent of fluvial flooding that has been experienced. However the GIS layer does not contain information on the date of the flood event. These datasets are included on Figures C1-C13 (Appendix C). As well as these datasets, hydraulic modelling reports for the modelling studies for each of the main rivers has been provided by the Environment Agency, and these contain details regarding the dates of past flood events, as described in Section 3.10.</td>
</tr>
<tr>
<td>Surrey County Council</td>
<td>SCC has provided a GIS layer of ‘wetspots’ throughout the Borough. ‘Wetspot’ is a term used by SCC as the LLFA to describe the location of a surface water flood incident that has been reported. The wetspot database is continually updated to produce a comprehensive map and record of all the identified wetspots in Surrey. Information from Surrey risk management authorities informs the database. SCC currently prioritises capital works at wetspots throughout the county based on a number of factors. These factors include safety, internal property flooding, social impact and duration of flooding. Details of these specific factors have not been supplied for the purposes of the SFRA. This dataset is included on Figures D1-D13 (Appendix D) and the road names are listed in Appendix A.</td>
</tr>
<tr>
<td>Highways Agency</td>
<td>The Highways Agency has provided information on incidents relating to flooding, standing water and ponding on the Highways Agency network from their command and control system. These are described in Section 3.11 and mapped in Appendix D, Figures D1-D13.</td>
</tr>
<tr>
<td>Thames Water</td>
<td>TWUL has provided an extract from their DG5 Flood Register for the study area. Due to data protection requirements the data has not been provided at individual property level; rather the register comprises the number of properties within 4 digit postcode areas that have experienced flooding either internally or externally within the last 10 years. It should be noted that records only appear on the DG5 register where they have been reported to TWUL, and as such they may not include all instances of sewer flooding. These records are mapped in Appendix B, Figures B7 and B8.</td>
</tr>
</tbody>
</table>
Flood Warning Areas

2.3.38 The Environment Agency operates a free Flood Warning Service\(^{16}\) for many areas at risk of flooding from rivers and the sea. In some parts of England the Environment Agency may also be able to tell when flooding from groundwater is possible. The Environment Agency has provided a GIS layer of Flood Warning Areas in Elmbridge.

Appendix B, Figure B9

Emergency Rest Centres

2.3.39 Elmbridge BC has provided a GIS layer detailing the rest centres with the Borough which are designated in the Multi-Agency Flood Plan.

Appendix B, Figure B9

Flood Risk Management Measures

2.3.40 The Environment Agency has provided an extract from the Asset Information Management System (AIMS) which contains details of flood defence assets associated with Main Rivers in Elmbridge. As part of the modelling for the Middle Mole, a GIS layer has been provided identifying areas benefiting from flood defences in the West End area of Esher. This information is shown on the Flood Map for Planning (Rivers and Sea).

2.3.41 The Thames Catchment Flood Management Plan has been consulted, which is a high level plan developed by the Environment Agency that provides an overview of flood risk in the wider Thames catchment and sets out preferred plan for sustainable flood risk management over the next 50 to 100 years\(^{17}\).

2.3.42 Building upon the flood risk management measures set out in the CFMP, the Environment Agency has provided details of the proposed River Thames Scheme between Datchet and Teddington which will impact flood risk affecting communities in Elmbridge.

3 ASSESSING FLOOD RISK

3.1 Overview

3.1.1 Using the datasets identified in Section 2, this Section provides a strategic assessment of the flood risk across the Borough from each source. Schedules presenting this information specific to each of the 8 Settlement Areas are included in Appendix E.

3.2 Area

3.2.1 Elmbridge covers an area of approximately 96km²; of which approximately 58% is greenbelt and 42% is urban area. Elmbridge has 8 Settlement Areas as identified in Figure 3-1 which are used for planning purposes. There are 2 Main Settlement Areas of Weybridge and Walton-on-Thames located in the west and north of the Borough respectively; 4 Suburban Settlement Areas of Esher; Hersham; Thames Ditton, Long Ditton, Hinchley Wood and Weston Green; and East and West Molesey; the Suburban Village of Claygate in the east of the Borough; and the Service Centre and Rural Fringe of Cobham, Oxshott, Stoke D'Abernon and Downside in the south.

![Figure 3-1 Elmbridge BC Settlement Areas (Aerial photography provided by Elmbridge BC, 2010)](image-url)
3.3 Character

3.3.1 Elmbridge is a Surrey Borough located in the South East region, immediately to the south west of London. Much of the urban area in the north of the Borough is a continuation of the built-up area of suburban London linking through to more rural areas in the south. Elmbridge is bordered to the north by the River Thames and the administrative areas of Spelthorne Borough and Royal Borough of Richmond upon Thames; to the east by the London Borough of Kingston upon Thames; to the south by Mole Valley District and Guildford Borough; and to the west by Woking and Runnymede Boroughs.

3.3.2 Elmbridge has a unique position as a highly desirable area as a result of its location as a Surrey Borough in close proximity to London and its high quality environment. As a result of good accessibility by rail and road to Central London, and within easy reach of Heathrow and Gatwick Airports, the M25 and the M3, land values are high and development pressure intense.

3.4 Topography

3.4.1 The River Thames flows eastwards along the northern edge of the Borough where the land is low lying at levels of approximately 5-10m Above Ordnance Datum (AOD). The northern half of the Borough is largely low lying and flat and levels gradually rise to 20-30m AOD towards the settlements of Hersham, Esher and Claygate. As the name suggests, the area of St George's Hill in Weybridge is at a higher elevation, but the west of the Borough drops down again to the floodplain of the River Wey (10-20m AOD). Levels rise again in the south east of the Borough up to approximately 60-70m AOD towards the urban area of Oxshott and the surrounding rural land that drains into the Rythe.

Appendix B, Figure B1 Topography

3.5 Geology

3.5.1 The geology of the Borough comprises a covering of superficial deposits over approximately 50% of the area. This is mainly in the northern parts of the Borough and a stretch running along the line of the River Ember and the River Mole to the south. There are also two small isolated areas of superficial deposits around the Weybridge/Hersham and Cobham settlement areas.

3.5.2 The superficial deposits in the area include Quaternary age river terrace deposits, alluvium and head. The main gravels terraces are the Kempton Park Gravels Formation and Taplow Gravels Formation in the northern part of the Borough and Main River valleys. The two isolated areas of gravels are Lynch Hill Gravel Formation (in Weybridge/Hersham) and Boyn Hill Gravel Formation (in Cobham) where both active and restored gravel pits exist.

3.5.3 The bedrock geologies include Eocene age Bagshot Formation, Claygate Member (upper part of London Clay Formation) and the rest of London Clay Formation. These are the oldest rocks found in the Borough at outcrop. The youngest rocks are the small isolated patches of Camberley Sand Formation and Windlesham Formation, found mainly in the Weybridge area around St George’s Hill.

3.5.4 The London Clay comprises clayey silt beds grading to silty fine-grained sand, this is found beneath the superficial deposits in the northern part of the Borough and at the surface along the western and southern parts of the Borough. The upper sandier part of the London Clay Formation is known as the Claygate Member to distinguish its coarser-grained nature. This is present in the central part of the Borough and along the western side of the Borough. In the Weybridge, Hersham, Cobham and Esher settlement areas, the Claygate Member is overlain by Bagshot Formation. This formation is characterised by fine grained yellow orange brown
quartz sand with frequent clay laminations, some silt layers, and flint pebble beds in the upper horizons.

3.5.5 In general, most of bedrock within the Borough is flat lying and there are few faults identified at the surface.

Appendix B, Figure B2 Superficial Geology, Figure B3 Bedrock Geology

3.6 Aquifers

3.6.1 The bedrock underlying the western part of the Borough including Weybridge, Hersham and Cobham is designated a secondary aquifer. This is defined by the Environment Agency as a permeable layer capable of supporting water supplies at a local rather than strategic scale and in some cases forming an important source of base flow to rivers. The remainder of the Borough to the east is designated unproductive strata which is rock strata with low permeability that has negligible significance for water supply or river base flow.

3.6.2 The superficial deposits present along the corridor of the River Wey and River Mole are classified as a principal aquifer. According to Environment Agency definitions, a principal aquifer is defined as having intergranular permeability, which can provide a high level of water storage, and support water supply and/ or river base flow on a strategic scale.

3.7 Groundwater Vulnerability

3.7.1 In a similar manner to the geological conditions and aquifer designations, the corridor adjacent to the River Thames, River Mole and River Wey has a Major Aquifer High and Intermediate designation on the Groundwater Vulnerability mapping.

3.7.2 The northern parts of Weybridge and Esher are defined as Minor Aquifer High and the southern parts of these areas are designated Minor Aquifer Intermediate.

3.7.3 The Environment Agency defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. There is only one small area defined as a SPZ in the Borough which is Desborough Island adjacent to the River Thames to the north of Weybridge.

3.8 Main Rivers

3.8.1 There are five Main Rivers present within the Borough.

- The River Wey flows north along the western edge of the Borough. The catchment of the Wey lies within Hampshire and Surrey and has a total area of approx. 904 km². It falls approximately 190m in level, and is approximately 104 km in length from its source in Hampshire to the confluence with the Thames near Weybridge urban centre. The Lower Wey is navigable from its confluence with the Thames up to Godalming. It includes a number of navigation channels separate from the Main River, with water levels regulated by structures such as locks and weirs. Through the urban area of Weybridge, the natural channels have been engineered and canalised to varying degrees.

- The River Mole and its tributaries have a catchment of approximately 487km².
 - The Mole rises in the North Sussex Hills near Rusper and flows into the River Thames at Molesey, near Hampton Court.

o The Middle Mole extends from where the Salford Stream tributary meets the River Mole, just upstream of Sidlow Bridge in the Reigate and Banstead District, to the Esher Railway Bridge. The catchment of the Middle Mole covers approximately 270km².

o The Lower Mole extends from Esher Railway Bridge downstream to its confluence with the River Thames at Molesey, near Hampton Court. The catchment covers an area of approximately 11km². The Lower Mole has been extensively modified by the construction of the Lower Mole Flood Alleviation Scheme between 1977 and 1991. The Dead River is the main tributary of the Lower Mole.

o The River Ember is a channel of the River Mole which flows around the east of Island Barn Reservoir before flowing northeast, parallel to the Lower Mole channel towards their confluence with the Thames, just south of Hampton Court Bridge.

- The Dead River flows in a north-easterly direction from Walton-on-Thames, round the Queen Elizabeth II Storage Reservoir and through West Molesey, where it joins the River Mole. The Dead River is the only significant tributary of the Lower Mole. The Dead River drains a catchment of approximately 5km², 50% of which is urbanised. It has one small tributary in the upper reaches, which is approximately 0.25km long.

- The River Rythe rises near Oxshott, in the Prince’s Coverts woodland and flows northwards, through Claygate and along the edge of Hinchley Wood. The river then follows the Portsmouth Road towards Thames Ditton, and runs into the River Thames near Ferry Road, forming the boundary between Kingston and Thames Ditton.

- The Lower Thames flows along the northern boundary of the Borough between Weybridge and Thames Ditton. The Lower Thames floodplain is relatively broad and flat and the river itself contains several islands. The normal tidal limit of the River Thames occurs at Teddington Weir, approximately 5km downstream from Thames Ditton (TQ 1675 7149), but on a high tide, the tidal influence can extend as far back upriver as Molesey Weir.

Appendix B, Figure B4 Watercourses and Water Bodies

3.9 Ordinary Watercourses

3.9.1 As well as Main Rivers there are a number of smaller Ordinary Watercourses in the Borough, which form tributaries of the Main Rivers. These are smaller streams, ditches and drainage channels, the majority of which are open channel. There are some small sections of culverted watercourse around Stoke D’Abernon in the south of the Borough. Figure B4 also identifies drainage ditches that are maintained by SCC as highways drainage ditches.

Appendix B, Figure B4 Watercourses and Water Bodies

3.10 Flooding from Rivers

3.10.1 A large proportion of the Borough is located in areas that have a Medium and High probability of flooding from rivers (i.e. Flood Zones 2 and 3). The floodplain of the Lower Thames affects the northern and north east fringe of the Borough including Walton, Molesey and Thames

19 This includes “all rivers and streams and all ditches, drains, cuts, culverts, dikes, sluices (other than public sewers within the meaning of the Water Industry Act 1991) and passages, through which water flows” according to the Land Drainage Act 1991.
Ditton, Weybridge and the western edge of the Borough are within the floodplain of the River Wey. The River Mole and the River Rythe flow northwards through the Borough and the floodplains associated with these watercourses affect the settlements of Cobham, Stoke D’Abermon, Downside, Esher, Claygate, West End, Hersham, Walton and Molesey.

3.10.2 Across Elmbridge:

- 69% (66km²) is defined as Flood Zone 1 Low Probability of flooding from rivers.
- 19% (19km²) is defined as Flood Zone 2 Medium Probability of flooding from rivers.
- 7% (7km²) is defined as Flood Zone 3a High Probability of flooding from rivers.
- 5% (4km²) is defined as Flood Zone 3b (Developed or Undeveloped areas).

3.10.3 Of the land identified as Flood Zone 3b, there are important areas of undeveloped functional floodplain, including Ditton Field and Hurst Park adjacent to the River Thames; Desborough Island, The Bull Dogs and Trinity Island adjacent to the River Wey; and the relatively wide floodplain of the Middle Mole which comprises rural land. Following the completion of the modelling of the River Rythe, there may also be areas of rural land identified adjacent to this watercourse designated Flood Zone 3b. There are also areas of developed land within the Flood Zone 3b, as a guide these areas include:

- Brooklands Road and Brooklands Museum, Weybridge;
- Wey Road, Weybridge;
- Felix Lane, Walton-on-Thames;
- Wheatley’s Eyot, Walton-on-Thames;
- Beasley’s Ait Lane, Walton-on-Thames;
- Immediately upstream of Sunbury Weir, Walton-on-Thames;
- Garrick’s Eyot, East and West Molesey; and
- Thames Ditton Island, Thames Ditton.

Appendix C, Figures C1-C13

Dry Islands

3.10.4 The floodplain in Elmbridge, particularly along the River Thames and River Wey, is relatively flat and broad. There may be small areas within the floodplain where the ground levels are slightly higher and which are therefore less likely to flood than the land around them. These areas are typically referred to as ‘dry islands’. These areas can sometimes be identified by looking at the Flood Zone map; for example an area of Flood Zone 1 or 2, surrounded by land designated as Flood Zone 3. When considering the flood risk to these areas, the risk to the surrounding area should be taken into account.

Climate Change

3.10.5 The results of the hydraulic modelling studies for the main rivers suggest that climate change will not markedly increase the extent of river flooding within most areas of the Borough. However there are a few places where the extent of flooding is noticeably increased, including flooding from the Lower Thames in West Molesey; flooding from the Lower Mole in East Molesey to the south of the River Mole and Ember channels; flooding from the Lower Mole affecting Lower Green and properties north of the railway line; flooding along the Mole...
floodplain on the western side of West End and Esher; flooding associated with the River Wey close to the Brooklands Industrial Estate.

3.10.6 It is important to note that these areas, as well as those areas that are currently at risk of flooding may be susceptible to more frequent, more severe flooding in future years. It is essential therefore that the development control process (influencing the design of future development within the Borough) carefully mitigates against the potential impact that climate change may have upon the risk of flooding to the property.

3.10.7 For this reason, all of the development control recommendations set out in Section 5 require all floor levels, access routes, drainage systems and flood mitigation measures to be designed with an allowance for climate change; and the potential impact that climate change may have over the lifetime of a proposed development should be considered as part of a site-specific FRA. This provides a robust and sustainable approach to the potential impacts that climate change may have upon the Borough over the next 100 years, ensuring that future development is considered in light of the possible increases in flood risk over time.

Historic Flooding

3.10.1 Elmbridge has a long history of flooding from the rivers present within its study area, as described below.

3.10.2 Lower Wey: Flooding in the Lower Wey catchment has been reported as early as the late 1800s. Notable flooding occurrences within the catchment have been reported in 1900, 1947, 1968, 1979, 1985, 1987, 1990, 2000, 2003, 2006, 2007 and 2014. The flooding occurrence in the Lower Wey is influenced by the geology, and the rapid rate of urbanisation within the study area20.

3.10.3 Lower Thames: Since 1947 there have been relatively few large flood events in the Lower Thames catchment. Recent events of note occurred in September 1968, (although this was confined mainly to the River Mole and the River Wey), June 1971 and November 1974. In the 1990s there were few large out-of-bank flood events. The largest recent flood events occurred in January 2003 and January / February 2014. Other smaller floods occurred in February 1990, December 1992, January 1994, December 1996 and November-December 200021.

3.10.4 Middle Mole: Flooding has been reported historically from the Middle Mole and the residential areas of Cobham and Esher have a history of repeated flooding. The following occurrences have been recorded22:

- March 1947: Severe flooding caused by heavy rain falling onto the snow that had blighted much of the country throughout the bitter winter of 1947. This caused disastrous flooding for the towns near the River Thames.

- September 1968: Widely accepted to have been the worst ever recorded in this area with disastrous consequences in the Mole catchment. Flooding followed the wettest September on record in which parts of the county received a third of their annual rainfall. This was compounded by torrential rain over the weekend of the 14th - 15th September which caused flooding problems made worse by the saturated soil. The event hit the towns of Esher and Molesey in the Lower Mole valley badly. In this area the flood was presumed to be a 1 in 200 year event. Further upstream the damage was also considerable; several bridges were destroyed including Downside Bridge at Cobham and Boxhill Bridge near Dorking January 1980: Reported to be the worst

since 1968 and described as an emergency which lasted 24 hours before the flood waters in the Wey at Guildford and the Mole in Dorking returned to normal.

- February 1990: The Surrey Advertiser stated that ‘Two men died, thousands of families suffered damage to cars and property and insurance companies braced for more claims than in 1987’ as a result of torrential rain and storm force winds.

- October 1993: Flood levels on the road into Brockham rose to their highest level since December 1979 and the road at Borough Bridge was closed. Floods also affected Dorking and Betchworth.

- December 1994: An overnight deluge caused the River Mole to rise by 3 m and flood Mill Road in Cobham. Recorded as the second largest in terms of flow at both Castle Mill and Esher Gauging stations.

- Autumn 2000: The worst floods since the 1968 event; reported as the wettest autumn on record in the UK and many rivers in Surrey burst their banks. Gauging stations on the Mole recorded the highest flows since 1968, with the flow at Esher reaching 115 m³/s. Extensive areas of rural land in Elmbridge were affected.

- December 2013: During the severe weather experienced in December 2013, the Middle Mole burst its banks at Cobham, resulting in flooding of the rural floodplain and adjacent properties.

3.10.5 Lower Mole: Since the completion of the Lower Mole Flood Alleviation Scheme in 1991 there have been no out-of-bank flood events on the Lower Mole or Ember.

3.10.6 Dead River: The Environment Agency has no record of any flood events on the Dead River.

Appendix C, Figures C1-C13

Flood Risk Management Schemes

3.10.7 The Environment Agency Asset Information Management System (AIMS) contains details of flood defence assets associated with Main Rivers. This information is presented in Appendix C Figures C1-C13. This dataset shows that the majority of the watercourses are not formally defended but may be informally protected by high ground on either side of the watercourse.

3.10.8 Lower Mole Flood Alleviation Scheme: Formal flood defences including earth embankments and concrete flood walls are present along both banks of the River Mole from West End in Esher downstream to the confluence with the River Thames. These defences form part of the Lower Mole Flood Alleviation Scheme. The Flood Map for Planning (Rivers and Sea) shows that these defences generate an Area Benefiting from Defences for Flood Zone 3 in the Esher and Hersham Settlement Areas. These areas are also shown in Figures C-5 and C-11 in Appendix C.

3.10.9 Thames Catchment Flood Management Plan (CFMP): The CFMP provides an overview of the flood risk in the Thames catchment and sets out the preferred plan for sustainable flood risk management over the next 50 to 100 years. It identifies flood risk management policies to assist all key decision makers in the catchment including LPAs who can use the plan to inform spatial planning activities and emergency planning. The CFMP sets out the preferred policy for different sub-areas of the catchment that have been identified by their physical characteristics. There are 4 areas that cover the Elmbridge Borough and these are described further in Table 3-1.

Table 3-1 Catchment Flood Management Plan

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Preferred Policy</th>
<th>Environment Agency’s Proposed Actions</th>
</tr>
</thead>
</table>
| Lower Thames and Byfleet & Weybridge – ‘Heavily populated floodplain’. | Preferred Policy P5 ‘Areas of moderate to high flood risk where we can generally take further action to reduce flood risk’. | • We will deliver the actions recommended in Flood Risk Management Strategies for the Wey and Lower Thames once they are approved.
• In the short-term, we will encourage partners to develop policies, strategies and initiatives to increase the resistance and resilience of all new development at risk of flooding. We will also look at protecting land that may be needed to manage flood risk in the future, and work with partners to identify opportunities for this and to recreate river corridors in urban areas.
• In the longer-term, we need land and property owners to adapt the urban environment to be more flood resilient. This includes the refurbishment of existing buildings to increase resilience and resistance to flooding.
• We need to promote the management of flood consequences. By working with our partners we will improve public awareness and local emergency planning, for example identifying critical infrastructure at risk and producing community flood plans. |
| Lower Mole – ‘Places with significant flood defences’. | Preferred Policy P3 ‘Areas of low to moderate flood risk where we are generally managing existing flood risk effectively’. | • We will continue to maintain the Lower Mole and Maidenhead Windsor and Eton Flood Alleviation Schemes.
• We will work closely with Local Authorities to ensure that we are well prepared to respond to the consequences of flooding from other sources and extreme events.
• We will work with our partners to ensure that any future development in these areas results in a reduction in the overall flood risk.
• We will continue to make sure the recommendations in Strategic Flood Risk Assessments and Local Development Framework policies create the potential to reduce flood risk through adaptation of places at risk, and retaining open spaces in the floodplain. |
| Middle Mole – ‘Chalk and downland catchments’. | Preferred Policy P3 ‘Areas of low to moderate flood risk where we are generally managing existing flood risk effectively’. | • We want to maintain the existing capacity of the river systems in developed areas to reduce the risk of flooding from more frequent events. We will work with our partners to identify opportunities to make the existing systems more efficient (for example, where there are significant restrictions to flow from undersized culverts or bridges).
• We will work with Local Planning Authorities to retain the remaining floodplain for uses that are compatible with flood risk management and put in place polices that lead to long-term adaptation of urban environments in flood risk areas.
• We will continue to increase public awareness, including encouraging people to sign-up for the free Floodline Warnings Direct service. |
3.10.10 The Environment Agency has recently consulted on a draft Flood Risk Management Plan for the Thames River Basin District.\(^{24}\)

3.10.11 **River Thames Scheme:** The Environment is currently working on the development of the River Thames Scheme between Datchet and Teddington, which is a proposed scheme to reduce flood risk in communities near Heathrow including Datchet, Wraysbury, Egham, Staines, Chertsey, Shepperton, Sunbury, Kingston and Teddington.

3.10.12 The scheme comprises large scale engineering work to construct three new sections of flood channel totalling 17km, improvements to three of the existing Thames weirs, installation of property level products for up to 1,200 homes to improve resistance to flooding, and improved flood incident response plans.

3.10.13 The proposed scheme is estimated to cost in the region of £256 million (present value cost at 2009 prices) and is expected to qualify for a central government grant of approximately £136 million. The remaining funding of approximately £120 million needs to be secured from other sources, including local enterprise partnerships and businesses. The Thames Regional Flood and Coastal Committee are currently funding much of the development stages of the scheme. This has established the delivery programme and enabled progress on several projects as part of the scheme. The River Thames Scheme can only be delivered if the full funding is secured.

3.10.14 All communities between Datchet and Teddington will benefit from the River Thames Scheme. This includes the communities downstream of the flood channel, as the weir modifications will reduce water levels between Walton Bridge and Teddington. The degree of benefit will vary along this 40 kilometre length of the river. As the flood risk cannot be eliminated completely, some households benefiting from the scheme are also being offered property level products. These products will help to make homes more resistant to flooding. Overall the River Thames Scheme will significantly reduce the likelihood of flooding for the 15,000 properties at a time when climate change is predicted to increase flood risk.

3.10.15 Within Elmbridge the main benefit of the scheme will be through the upgrades to the Sunbury and Molesey Weirs and the installation of property level products.

3.10.16 Modifications to Sunbury weir and Desborough Cut will fully mitigate the increase in flow due to the channel operation, and also provide some small scale reduction the water levels in flood conditions after the channels are built and in operation. Once the scheme is completed, the additional gates proposed at Sunbury weir and the widened Desborough Cut will allow greater flow (up to 4%) through them and reduce the upriver water levels. The capacity improvements to the weirs and Desborough Cut will result in an overall small reduction in flood water levels all the way through the lower reaches of the River Thames, from Walton Bridge to Teddington.

3.10.17 As part of the scheme the Environment Agency has identified approximately 1600 properties that would remain with a flood risk of 1 in 40 years or greater, once the flood channel has been constructed. Properties that remain at this higher risk of flooding may be offered Property Level Products to help make their homes more resistant to flooding. Within Elmbridge the Environment Agency currently estimate that there are 193 eligible properties. This project is currently being reviewed to learn from the experiences residents had during the 2014 floods. This will ensure the most effective products are provided under the scheme in future.

3.10.18 **Residual Risk**

It is important to recognise that the risk of flooding from the rivers in Elmbridge can never be fully mitigated, and there will always be a residual risk of flooding that will remain after

measures have been implemented to protect an area or a particular site from flooding. This residual risk is associated with a number of potential risk factors including (but not limited to):

- a flooding event that exceeds that for which the flood risk management measures have been designed e.g. flood levels above the designed finished floor levels,
- the structural deterioration of flood defence structures (including informal structures acting as a flood defence) over time, and/or
- general uncertainties inherent in the prediction of flooding.

3.10.19 The modelling of flood flows and flood levels is not an exact science, therefore there are inherent uncertainties in the prediction of flood levels used in the assessment of flood risk. Whilst the NPPF Flood Zones provide a relatively robust depiction of flood risk for specific conditions, all modelling requires the making of core assumptions and the use of empirical estimations relating to (for example) rainfall distribution and catchment response.

3.10.20 Steps should be taken to manage these residual risks through the use of flood warning and evacuation procedures, as described in Section 5.11.

3.11 Flooding from Land

3.11.1 Overland flow and surface water flooding typically arise following periods of intense rainfall, often of short duration, that is unable to soak into the ground or enter drainage systems. It can run quickly off land and result in localised flooding.

3.11.2 Appendix D Figures D1 – D13 present the uFMISW mapping for the Elmbridge BC study area in combination with historical surface water flooding data recorded by SCC, Elmbridge BC and the Environment Agency and information within the Surrey CC PFRA.

3.11.3 These datasets provide a picture of surface water flooding across the Borough and identify that incidents are widespread across most part of the Borough. The following areas are shown to be at particular risk, although this list is by no means exhaustive:

- Surface water flood risk in Thames Ditton is highlighted in the PFRA, where there are also a number of the highest priority SCC wetspots;
- Ponding of surface water along the low-lying floodplain of the Middle Mole, including areas such as Cobham Park;
- Flooding along the roads sloping down from Fairmile towards Cobham and Stoke D’Abernon and the residential areas at the bottom of this high ground;
- Flooding in Weybridge centre including the recreation ground and playing fields;
- Ponding of surface water along Brooklands Road and Locke King Road south of Weybridge town centre;
- Surface water flooding in the residential area between Burwood Park and Hersham;
- Ponding along the River Rythe floodplain at Hare Lane Green in Esher;
- Ponding of surface water adjacent to the railway embankments in Long Ditton and Hinchley Wood; and
• Extensive surface water flooding in Walton-on-Thames along the roads and residential area to the south of the Queen Elizabeth II Reservoir.

3.11.4 According to historic records provided by the Highways Agency, during two incidents in December 2012 and December 2013, traffic was diverted off the A3 via the M25 roundabout and back on due to surface water on the carriageways. In two incidents in January 2014 and February 2014 flooding occurred on the A3 as a result of an overflowing lake on Surrey Wildlife Trust property adjacent to the A3 during an extended period of wet weather. All of these incidents were confined to the Highways Agency network.

Climate Change

3.11.5 The uFMfSW does not include a specific scenario to determine the impact of climate change on the risk of surface water flooding. However a range of three annual probability events have been undertaken; 3.3%, 1% and 0.1% and therefore it is possible to use with caution the 0.1% outline as a substitute dataset to provide an indication of the implications of climate change.

3.12 Flooding from Groundwater

3.12.1 Groundwater flooding usually occurs in low lying areas underlain by permeable rock and aquifers that allow groundwater to rise to the surface through the permeable subsoil following long periods of wet weather. Low lying areas may be more susceptible to groundwater flooding because the water table is usually at a much shallower depth and groundwater paths tend to travel from high to low ground.

Appendix B, Figure B5 Susceptibility to Groundwater Flooding

3.12.2 Reference to the BGS dataset ‘Susceptibility to Groundwater Flooding’ in Appendix B Figure B5 identifies that some areas are not considered to be at risk of groundwater flooding e.g. along the southern fringes in the higher parts of the Elmbridge BC area.

3.12.3 In broad terms there is limited potential for groundwater flooding in the central part of the Borough including Weybridge urban area, Esher and Cobham. The potential for groundwater flooding is greater in Hersham, Walton-on-Thames and East and West Molesey where the underlying geological conditions are more permeable.

3.13 Flooding from Sewers

3.13.1 During heavy rainfall, flooding from the sewer system may occur if:

1) The rainfall event exceeds the capacity of the sewer system/drainage system:

3.13.2 Sewer systems are typically designed and constructed to accommodate rainfall events with an annual probability of 3.3% (1 in 30 chance each year) or greater. Therefore, rainfall events with an annual probability less than 3.3% would be expected to result in surcharging of some of the sewer system. While TWUL, as the sewerage undertaker for Elmbridge BC, recognise the impact that more extreme rainfall events may have, it is not cost beneficial to construct sewers that could accommodate every extreme rainfall event.

2) The system becomes blocked by debris or sediment:

3.13.3 Over time there is potential that road gullies and drains become blocked from fallen leaves, build-up of sediment and debris (e.g. litter).

3) The system surcharges due to high water levels in receiving watercourses:

3.13.4 Within the study area there is potential for surface water outlets to become submerged due to high river levels. When this happens, water is unable to discharge. Once storage capacity
within the sewer system itself is exceeded, the water will overflow into streets and potentially into houses. Where the local area is served by 'combined' sewers i.e. containing both foul and storm water, if rainfall entering the sewer exceeds the capacity of the combined sewer and storm overflows are blocked by high water levels in receiving watercourses, surcharging and surface flooding may again occur but in this instance floodwaters will contain untreated sewage.

Appendix B, Figure B7 Internal Sewer Flooding Incidents
Appendix B, Figure B8 External Sewer Flooding Incidents

3.13.5 Appendix B Figures B7 and B8 show the DG5 Register that has been supplied by Thames Water. It should be noted that these are flooding incidents that have been reported to TWUL by the home owners. There are obviously incidents that don't get reported and therefore will not show on the register. Incidents of sewer flooding can be retrospectively reported to TWUL via their website – http://thameswater.co.uk/help-and-advice/9782.htm. This dataset identifies that 1-5 properties have been affected by internal flooding in the western part of Esher, Claygate and Weybridge, and as many as 21-30 properties have been affected in East Moseley. External flooding has affected a broader area, as shown in Figure B8, with Esher being the area with most properties affected (6-10 in the last 10 years).

3.14 Flooding from Reservoirs

3.14.1 Table 3-2 provides a list of surface water bodies in the study area that have been identified from a review of 1:10,000 scale OS mapping and are greater than 0.01km².

Appendix B, Figure B4 Watercourses and Waterbodies

3.14.2 There are four large water supply reservoirs present within the Borough, the Queen Elizabeth II Storage Reservoir, Bessborough Reservoir and Knight Reservoir all located within Walton-on-Thames, and Island Barn Reservoir in East and West Molesey. In addition, the Queen Mary Reservoir is located in neighbouring Spelthorne Borough to the north of Elmbridge.

TWUL is responsible for the management of these reservoirs and ensuring all required safety standards are met.

3.14.3 The Environment Agency dataset 'Risk of Flooding from Reservoirs' identifies areas that could be flooded if a large reservoir were to fail and release the water it holds. The mapping shows the part of the Borough to the north of the railway line to be at risk from the five reservoirs identified above, including Walton-on-Thames and East and West Molesey and Thames Ditton.

3.14.4 The failure of a reservoir has the potential to cause catastrophic damage due to the sudden release of large volumes of water. The NPPG encourages LPAs to identify any impounded reservoirs and evaluate how they might modify the existing flood risk in the event of a flood in the catchment it is located within, and / or whether emergency draw-down of the reservoir will add to the extent of flooding.

3.14.5 Reservoirs in the UK have an extremely good safety record. The Environment Agency is the enforcement authority for the Reservoirs Act 1975 in England and Wales. All large reservoirs must be inspected and supervised by reservoir panel engineers. It is assumed that these reservoirs are regularly inspected and essential safety work is carried out. These reservoirs therefore present a minimal risk.

25 A large reservoir is one that holds over 25,000 cubic metres of water, equivalent to approximately 10 Olympic sized swimming pools.
Elmbridge BC is responsible for working with members of the Local Resilience Forum (LRF) to develop emergency plans for reservoir flooding and ensuring communities are well prepared.

Table 3-2 Artificial Sources

<table>
<thead>
<tr>
<th>Name</th>
<th>Settlement Area</th>
<th>Approximate Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queen Elizabeth II Storage Reservoir</td>
<td>Walton-on-Thames</td>
<td>1.29</td>
</tr>
<tr>
<td>Island Barn Reservoir</td>
<td>East and West Molesey</td>
<td>0.50</td>
</tr>
<tr>
<td>Bessborough Reservoir</td>
<td>Walton On Thames</td>
<td>0.30</td>
</tr>
<tr>
<td>Knight Reservoir</td>
<td>Walton-on-Thames</td>
<td>0.21</td>
</tr>
<tr>
<td>Molesey Reservoirs Nature Reserve</td>
<td>Walton-on-Thames</td>
<td>0.15</td>
</tr>
<tr>
<td>Gravel Pits</td>
<td>Walton-on-Thames</td>
<td>0.08</td>
</tr>
<tr>
<td>Broad Water</td>
<td>Weybridge</td>
<td>0.08</td>
</tr>
<tr>
<td>The Lake</td>
<td>Hersham</td>
<td>0.07</td>
</tr>
<tr>
<td>Claremont Lake</td>
<td>Esher</td>
<td>0.03</td>
</tr>
<tr>
<td>Silver Mere (Golf Club)</td>
<td>Weybridge</td>
<td>0.03</td>
</tr>
<tr>
<td>Broad Water Burwood Park</td>
<td>Hersham</td>
<td>0.03</td>
</tr>
<tr>
<td>Norwood Farm</td>
<td>Cobham, Oxshott, Stoke D'Abernon and Downside</td>
<td>0.02</td>
</tr>
<tr>
<td>Fairmile Park</td>
<td>Cobham, Oxshott, Stoke D'Abernon and Downside</td>
<td>0.02</td>
</tr>
<tr>
<td>Black Pond, Esher Common</td>
<td>Esher</td>
<td>0.02</td>
</tr>
<tr>
<td>Rivernook Farm</td>
<td>Walton-on-Thames</td>
<td>0.02</td>
</tr>
<tr>
<td>Fieldcommon Farm</td>
<td>Walton-on-Thames</td>
<td>0.02</td>
</tr>
<tr>
<td>Cobham Park</td>
<td>Cobham, Oxshott, Stoke D'Abernon and Downside</td>
<td>0.02</td>
</tr>
<tr>
<td>Willow Tree Farm</td>
<td>Hersham</td>
<td>0.01</td>
</tr>
<tr>
<td>Workings</td>
<td>Walton-on-Thames</td>
<td>0.01</td>
</tr>
<tr>
<td>Manor Pond</td>
<td>Hersham</td>
<td>0.01</td>
</tr>
<tr>
<td>Warren Pond</td>
<td>Weybridge</td>
<td>0.01</td>
</tr>
<tr>
<td>Stable Pond, Ardbrook House</td>
<td>Esher</td>
<td>0.01</td>
</tr>
<tr>
<td>West End Ponds</td>
<td>Esher</td>
<td>0.01</td>
</tr>
<tr>
<td>Middle Pond, Fairmile Common</td>
<td>Cobham, Oxshott, Stoke D'Abernon and Downside</td>
<td>0.01</td>
</tr>
<tr>
<td>The Lake, Lakeside Drive</td>
<td>Esher</td>
<td>0.01</td>
</tr>
<tr>
<td>The Heights</td>
<td>Weybridge</td>
<td>0.01</td>
</tr>
</tbody>
</table>
4 AVOIDING FLOOD RISK

4.1 Sequential Approach

4.1.1 This Section guides the application of the Sequential Test and Exception Test in the Plan-making and planning application processes. Not all development will be required to undergo these tests, as described below, but may still be required to undertake a site specific FRA, guidance about which is included in Section 6.

4.1.2 The sequential approach is a decision-making tool designed to ensure that sites at little or no risk of flooding are developed in preference to sites at higher risk. This will help avoid the development of sites that are inappropriate on flood risk grounds. The subsequent application of the Exception Test where required will ensure that new developments in flood risk areas will only occur where flood risk is clearly outweighed by other sustainability drivers.

4.1.3 The sequential approach can be applied at all levels and scales of the planning process, both between and within Flood Zones. All opportunities to locate new developments (except Water Compatible) in reasonably available areas of little or no flood risk should be explored, prior to any decision to locate them in areas of higher risk.

4.2 Applying Sequential Test – Plan-Making

4.2.1 It should be demonstrated that a range of possible sites have been considered in conjunction with the Flood Zone and vulnerability information from the SFRA, applying the Sequential Test, and where necessary, the Exception Test, in the site allocation process. Figure 4-1 illustrates the approach for applying the Sequential Test that Elmbridge BC should adopt in the allocation of sites as part of the preparation of the Elmbridge Local Plan. The Sequential Test should be undertaken by Elmbridge BC and accurately documented to ensure decision processes are consistent and transparent.

![Figure 4-1 Application of Sequential Test for Plan-Making](image-url)
The Sequential Test requires an understanding of the Flood Zones in the study area and the vulnerability classification of the proposed developments. Flood Zone definitions are provided in Table 2-2 and mapped in the figures in Appendix C (and the Flood Map for Planning (Rivers and Sea) on the Environment Agency website). Flood risk vulnerability classifications, as defined in the NPPG are presented in Table 4-1.

<table>
<thead>
<tr>
<th>Vulnerability Classification</th>
<th>Development Uses</th>
</tr>
</thead>
</table>
| Essential Infrastructure | • Essential transport infrastructure (including mass evacuation routes) which has to cross the area at risk.
• Essential utility infrastructure which has to be located in a flood risk area for operational reasons, including electricity generating power stations and grid and primary substations; and water treatment works that need to remain operational in times of flood.
• Wind turbines. |
| Highly Vulnerable | • Police stations, ambulance stations and fire stations and command centres and telecommunications installations required to be operational during flooding.
• Emergency dispersal points.
• Basement dwellings.
• Caravans, mobile homes and park homes intended for permanent residential use.
• Installations requiring hazardous substances consent. (Where there is a demonstrable need to locate such installations for bulk storage of materials with port or other similar facilities, or such installations with energy infrastructure or carbon capture and storage installations, that require coastal or water-side locations, or need to be located in other high flood risk areas, in these instances the facilities should be classified as “essential infrastructure”). |
| More Vulnerable | • Hospitals.
• Residential institutions such as residential care homes, children’s homes, social services homes, prisons and hostels.
• Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs and hotels.
• Non-residential uses for health services, nurseries and educational establishments.
• Landfill and sites used for waste management facilities for hazardous waste.
• Sites used for holiday or short-let caravans and camping, subject to a specific warning and evacuation plan. |
| Less Vulnerable | • Police, ambulance and fire stations which are not required to be operational during flooding.
• Buildings used for shops, financial, professional and other services, restaurants and cafes, hot food takeaways, offices, general industry, storage and distribution, non-residential institutions not included in “more vulnerable”, and assembly and leisure.
• Land and buildings used for agriculture and forestry.
• Waste treatment (except landfill and hazardous waste facilities).
• Minerals working and processing (except for sand and gravel working).
• Water treatment works which do not need to remain operational during times of flood.
• Sewage treatment works (if adequate measures to control pollution and manage sewage during flooding events are in place). |
| Water-Compatible Development| • Flood control infrastructure.
• Water transmission infrastructure and pumping stations.
• Sewage transmission infrastructure and pumping stations.
• Sand and gravel working.
• Docks, marinas and wharves.
• Navigation facilities.
• MOD defence installations.
• Ship building, repairing and dismantling, dockside fish processing and refrigeration and compatible activities requiring a waterside location.
• Water-based recreation (excluding sleeping accommodation).
• Lifeguard and coastguard stations.
• Amenity open space, nature conservation and biodiversity, outdoor sports and recreation and essential facilities such as changing rooms.
• Essential ancillary sleeping or residential accommodation for staff required by uses in this category, subject to a specific warning and evacuation plan. |
4.2.3 NPPF acknowledges that some areas will (also) be at risk of flooding from sources other than fluvial. All sources must be considered when planning for new development including: flooding from land or surface water runoff; groundwater; sewers; and artificial Sources.

4.2.4 If a location is recorded as having experienced repeated flooding from the same source this should be acknowledged within the Sequential Test.

Table 4-2 Flood Risk Vulnerability and Flood Zone ‘Compatibility’ (Planning Practice Guidance, 2014)

<table>
<thead>
<tr>
<th>Flood Risk Vulnerability Classification</th>
<th>Essential Infrastructure</th>
<th>Highly Vulnerable</th>
<th>More Vulnerable</th>
<th>Less Vulnerable</th>
<th>Water Compatible</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td></td>
<td>Exception Test Required</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3a</td>
<td>Exception Test Required</td>
<td>×</td>
<td>Exception Test Required</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3b *1</td>
<td>Exception Test Required*</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓*</td>
</tr>
</tbody>
</table>

- Development is appropriate
- Development should not be permitted
* In Flood Zone 3b (functional floodplain) essential infrastructure that has to be there and has passed the Exception Test, and water-compatible uses, should be designed and constructed to:
 - remain operational and safe for users in times of flood;
 - result in no net loss of floodplain storage;
 - not impede water flows and not increase flood risk elsewhere.
*1There are some areas within Flood Zone 3b that are already developed and are prevented from flooding by the presence of existing infrastructure or solid buildings. Whilst these areas will be subject to frequent flooding it may not be practical to refuse all future development. In recognition of this, Elmbridge BC has put in place an approach to prevent the unnecessary blight of these areas. See Section 2 for further details.

4.2.5 The recommended steps in undertaking the Sequential Test are detailed below. This is based on the Flood Zone and Flood Risk Vulnerability and is summarised in Table 4-2.

Recommended stages for LPA application of the Sequential Test in Plan-Making

4.2.6 The information required to address many of these steps is provided in the accompanying maps presented in Appendix B –D. When preparing a Local Plan a database of the potential allocation sites across Elmbridge should be generated and information for each site populated using the GIS layers presented in the maps. This database can be used by Elmbridge BC when applying the steps below.

1. Assign potential developments with a vulnerability classification (Table 4-1). Where development is mixed, the development should be assigned the highest vulnerability class of the developments proposed.

2. The location and identification of potential development should be recorded.
3. The Flood Zone classification of potential development sites should be determined based on a review of the Flood Map for Planning (Rivers and Sea). Where these span more than one Flood Zone, all zones should be noted, preferably using percentages.

4. The design life of the development should be considered with respect to climate change:
 - 100 years – up to 2115 for residential developments; and
 - 75 years – up to 2090 for commercial / industrial developments, or other time horizon specific to the non-residential use proposed.

5. Identify existing flood defences serving the potential development sites. However, it should be noted that for the purposes of the Sequential Test, Flood Zones ignoring defences should be used.

6. Highly Vulnerable developments to be accommodated within the Borough should be located on those sites identified as being within Flood Zone 1. If these cannot be located in Flood Zone 1, because the identified sites are unsuitable or there are insufficient sites in Flood Zone 1, sites in Flood Zone 2 can then be considered. If sites in Flood Zone 2 are inadequate then additional sites in Flood Zones 1 or 2 may need to be identified to accommodate development or opportunities sought to locate the development outside the Borough.

7. Once all Highly Vulnerable developments have been allocated to a development site, consideration can be given to those development types defined as More Vulnerable. In the first instance More Vulnerable development should be located on sites in Flood Zone 1. Where these sites are unsuitable or there are insufficient sites remaining, sites in Flood Zone 2 can be considered. If there are insufficient sites in Flood Zone 1 or 2 to accommodate More Vulnerable development, sites in Flood Zone 3a can be considered. More Vulnerable developments in Flood Zone 3a will require application of the Exception Test.

8. Once all More Vulnerable developments have been allocated to a development site, consideration can be given to those development types defined as Less Vulnerable. In the first instance Less Vulnerable development should be located on sites in Flood Zone 1, continuing sequentially with Flood Zone 2, then 3a. Less Vulnerable development types are not appropriate in Flood Zone 3b – Functional Floodplain.

9. Essential Infrastructure should be preferentially located in the lowest flood risk zones, however this type of development may be located in Flood Zones 3a and 3b, provided the Exception Test is satisfied.

10. Water Compatible development has the least constraints with respect to flood risk and it is considered appropriate to allocate these sites last. The sequential approach should still be followed in the selection of sites; however it is appreciated that Water Compatible development by nature often relies on access and proximity to water bodies.

11. On completion of the Sequential Test, consideration may need to be given to the risks posed to a site within a Flood Zone in more detail in a Level 2 SFRA. By undertaking the Exception Test, this more detailed study should consider the detailed nature of flood hazard to allow a sequential approach to site allocation within a Flood Zone. Consideration of flood hazard within a flood zone would include:

 - flood risk management measures,
 - the rate of flooding,
 - flood water depth,
 - flood water velocity.
4.2.7 Where the development type is Highly Vulnerable, More Vulnerable, Less Vulnerable or Essential Infrastructure and a site is found to be impacted by a recurrent flood source (other than tidal or fluvial), the site and flood sources should be investigated further regardless of any requirement for the Exception Test.

Windfall Sites

4.2.8 Windfall sites are those which have not been specifically identified as available in the Local Plan process. They comprise sites that have unexpectedly become available. In cases where development needs cannot be fully met through the provision of site allocations, a realistic allowance for windfall development should be assumed, based on past trends. It is recommended that the acceptability of windfall applications in flood risk areas should be considered at the strategic level through a policy setting out broad locations and quantities of windfall development that would be acceptable or not in Sequential Test terms.

4.2.9 Elmbridge BC will publish details of the Sequential Test as a separate document on the Council’s website. Until this time, the Council’s Strategic Housing Land Availability Assessment provides details of potential housing supply to meet development needs and assumed small scale windfall development within each of the Borough’s eight settlement areas to inform the application of the Sequential Test for individual planning applications.

4.3 Applying Sequential Test – Planning Applications

4.3.1 It is necessary to undertake a sequential test for a planning application if both of the following apply:

- The proposed development is in Flood Zone 2 or 3.
- A sequential test hasn’t already been done for a development of the type you plan to carry out on your proposed site (check with Elmbridge BC).

4.3.2 The Environment Agency publication ‘Demonstrating the flood risk Sequential Test for Planning Applications’ sets out the procedure for applying the sequential test to individual applications as follows:

- Identify the geographical area of search over which the test is to be applied; this could be the Borough area, or a specific catchment if this is appropriate and justification is provided (e.g. school catchment area or the need for affordable housing within a specific area).
- Identify the source of ‘reasonably available’ alternative sites; usually drawn from evidence base / background documents produced to inform the Local Plan.
- State the method used for comparing flood risk between sites; for example the Environment Agency Flood Map for Planning, the SFRA mapping, site-specific FRAs if appropriate, other mapping of flood sources.
- Apply the Sequential Test; systematically consider each of the available sites, indicate whether the flood risk is higher or lower than the application site, state whether the alternative option being considered is allocated in the Local Plan, identify the capacity of each alternative site, and detail any constraints to the delivery of the alternative site(s).
- Conclude whether there are any reasonably available sites in areas with a lower probability of flooding that would be appropriate to the type of development or land use proposed.

26 Environment Agency, April 2012, ‘Demonstrating the flood risk Sequential Test for Planning Applications’, Version 3.1
Where necessary, as indicated by Table 4-2, apply the Exception Test.

Apply the Sequential approach to locating development within the site, as described in Section 5.2.

4.3.3 It should be noted that it is for Elmbridge BC, taking advice from the Environment Agency as appropriate, to consider the extent to which Sequential Test considerations have been satisfied, taking into account the particular circumstances in any given case. The developer should justify with evidence what area of search has been used when making the application.

4.3.4 Ultimately, after applying the Sequential Test, Elmbridge BC needs to be satisfied in all cases that the proposed development would be safe and not lead to increased flood risk elsewhere. This needs to be demonstrated within a FRA (see section 6) and is necessary regardless of whether the Exception Test is required.

Sequential Test Exemptions

4.3.5 It should be noted that the Sequential Test does not need to be applied in the following circumstances:

- Individual developments proposed on sites which have been allocated in development plans through the Sequential Test.
- Minor development, which is defined in the NPPF as:
 - minor non-residential extensions: industrial / commercial / leisure etc. extensions with a footprint <250m².
 - alterations: development that does not increase the size of buildings e.g. alterations to external appearance.
 - householder development: for example; sheds, garages, games rooms etc. within the curtilage of the existing dwelling, in additional to physical extensions to the existing dwelling itself. This definition excludes any proposed development that would create a separate dwelling within the curtilage of the existing dwelling e.g. subdivision of houses into flats.
- Change of Use applications, unless it is for a change of use of land to a caravan, camping or chalet site, or to a mobile home site or park home site.
- Development proposals in Flood Zone 1 (land with a low probability of flooding from rivers or the sea) unless the SFRA, or other more recent information, indicates there may be flooding issues now or in the future (for example, through the impact of climate change).
- Redevelopment of existing properties (e.g. replacement dwellings), provided they do not increase the number of dwellings in an area of flood risk (i.e. replacing a single dwelling within an apartment block).

4.4 Exception Test

4.4.1 The purpose of the Exception Test is to ensure that, following the application of the Sequential Test, new development is only permitted in Flood Zone 2 and 3 where flood risk is clearly outweighed by other sustainability factors and where the development will be safe during its lifetime, considering climate change.
4.4.2 For the Exception Test to be passed:

- **Part 1** - It must be demonstrated that the development provides wider sustainability benefits to the community that outweigh flood risk, informed by the SFRA where one has been prepared; and

- **Part 2** - A site-specific Flood Risk Assessment must demonstrate that the development will be safe for its lifetime taking account of the vulnerability of its users, without increasing flood risk elsewhere, and, where possible, will reduce flood risk overall.

4.4.3 Both elements of the test will have to be passed for development to be allocated or permitted.

4.4.4 In order to determine Part 1) of the Exception Test, applicants should assess their scheme against the objectives within the Sustainability Appraisal (SA) Framework as set out in the SA Scoping Report and reproduced in Table 4-3 overleaf.

4.4.5 In order to demonstrate satisfaction of Part 2) of the Exception Test, the measures presented within Section 5 should be applied and demonstrated within a site-specific FRA as detailed in Section 6.
Table 4-3 Elmbridge BC Sustainability Appraisal Framework Objectives (March 2013)

<table>
<thead>
<tr>
<th>Sustainability Appraisal Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social progress that meets the needs of everyone:</td>
</tr>
<tr>
<td>1. To provide sufficient housing to enable people to live in a home suitable to their needs and which they can afford.</td>
</tr>
<tr>
<td>2. To facilitate the improved health and wellbeing of the whole population.</td>
</tr>
<tr>
<td>3. To reduce poverty, crime and social exclusion.</td>
</tr>
<tr>
<td>4. To minimise the harm from flooding.</td>
</tr>
<tr>
<td>5. To improve accessibility to all services and facilities.</td>
</tr>
<tr>
<td>Effective protection of the environment:</td>
</tr>
<tr>
<td>6. To make best use of previously developed land and existing buildings.</td>
</tr>
<tr>
<td>7. To reduce land contamination and safeguard soil quality and quantity.</td>
</tr>
<tr>
<td>8. To ensure air quality continues to improve.</td>
</tr>
<tr>
<td>9. To reduce noise pollution.</td>
</tr>
<tr>
<td>10. To reduce light pollution.</td>
</tr>
<tr>
<td>11. To improve the water quality of rivers and groundwater, and maintain an adequate supply of water.</td>
</tr>
<tr>
<td>12. To conserve and enhance biodiversity.</td>
</tr>
<tr>
<td>13. To conserve and enhance the natural and historic environments and cultural assets.</td>
</tr>
<tr>
<td>14. To reduce the need to travel, encourage sustainable transport options and make the best use of existing transport infrastructure.</td>
</tr>
<tr>
<td>15. To ensure that the Borough adapts to the impacts of the changing climate.</td>
</tr>
<tr>
<td>Maintenance of high and stable levels of growth:</td>
</tr>
<tr>
<td>16. Provide for employment opportunities to meet the needs of the local economy.</td>
</tr>
<tr>
<td>17. Support economic growth which is inclusive, innovative and sustainable.</td>
</tr>
<tr>
<td>Prudent use of natural resources:</td>
</tr>
<tr>
<td>18. To achieve sustainable production and use of resources.</td>
</tr>
<tr>
<td>19. To increase energy efficiency and the production of energy from low carbon technologies, renewable sources and decentralised generation systems.</td>
</tr>
</tbody>
</table>
5 MANAGING AND MITIGATING FLOOD RISK

5.1 Overview

5.1.1 The NPPF appreciates that it may not always be possible to avoid locating development in areas at risk of flooding. This Section provides guidance on the range of measures that could be considered in order to manage and mitigate flood risk. These measures should be considered when preparing a site-specific FRA as described in Section 6; Table 6-2 sets out which of these measures would need to be considered as part of proposals for household developments, extensions and new developments.

5.1.2 As noted in Section 3.10, it is essential that the development control process influencing the design of future development within the Borough carefully mitigates the potential impact that climate change may have upon the risk of flooding. As a result mitigation measures should be designed with an allowance for climate change over the lifetime of the proposed development as follows:

- 100 years (up to 2115) for residential developments; and
- 75 years (up to 2090) for commercial / industrial developments, or other time horizon specific to the non-residential use proposed.

5.2 Development Layout and Sequential Approach

5.2.1 Flood risk should be considered at an early stage in deciding the layout and design of a site to provide an opportunity to reduce flood risk within the development. Most large development proposals include a variety of land uses of varying vulnerability to flooding. The sequential approach should be applied within development sites to locate the most vulnerable elements of a development in the lowest risk areas (considering all sources of flooding) e.g. residential elements should be restricted to areas at lower probability of flooding whereas parking, open space or proposed landscaped areas can be placed on lower ground with a higher probability of flooding.

5.3 Finished Floor Levels

5.3.1 Where developing in Flood Zone 2 and 3 is unavoidable, the recommended method of mitigating flood risk to people, particularly with More Vulnerable (residential) and Highly Vulnerable land uses, is to ensure internal floor levels are raised a freeboard level above the design flood level.

5.3.2 In certain situations (e.g. for proposed extensions to buildings with a lower floor level or conversion of existing historical structures with limited existing ceiling levels), it could prove impractical to raise the internal ground floor levels to sufficiently meet the general requirements. In these cases, the Environment Agency and/or Elmbridge BC should be approached to discuss options for a reduction in the minimum internal ground floor levels provided flood resistance measures be implemented up to an agreed level. There are also circumstances where flood resilience measures should be considered first. These are...
described further below. For both Less and More Vulnerable developments where internal access to higher floors is required, the associated plans showing the access routes and floor levels should be included within any site-specific FRA.

5.3.3 Table 5-1 provides an overview of the requirements for finished floor levels for development in Elmbridge.

Table 5-1 Finished Floor Levels

<table>
<thead>
<tr>
<th>Development Type</th>
<th>Flood Zone 3</th>
<th>Flood Zone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor development (i.e. non-residential extensions with a floor space <250m² and householder developments)</td>
<td>Provide evidence to Elmbridge BC that EITHER, Floor levels within the proposed development will be set no lower than existing levels AND, flood proofing of the proposed development has been incorporated where appropriate. Details of flood proofing / resilience and resistance techniques to be included in accordance with 'Improving the flood performance of new buildings’ CLG (2007). OR, Floor levels within the extension will be set 300mm above the known or modelled 1 in 100 annual probability river flood (1%) in any year including climate change. This flood level is the extent of the Flood Zones. Applicants should provide a plan showing floor levels relative to flood levels. All levels should be stated in relation to Ordnance Datum.</td>
<td>Provide evidence to Elmbridge BC that, Floor levels within the proposed development will be set no lower than existing levels AND, flood proofing of the proposed development has been incorporated where appropriate. Details of flood proofing / resilience and resistance techniques to be included in accordance with 'Improving the flood performance of new buildings’ CLG (2007).</td>
</tr>
<tr>
<td>New residential development (More Vulnerable)</td>
<td>Where appropriate, subject to there being no other planning constraints (e.g. restrictions on building heights), finished floor levels should be set a minimum of 300mm above the 1% annual probability flood level (1 in 100 year) including climate change. The design flood level should be derived for the immediate vicinity of the site (i.e. relative to the extent of a site along a watercourse as flood levels are likely to vary with increasing distance downstream) as part of a site-specific FRA. Sleeping accommodation should be restricted to the first floor or above to offer the required ‘safe places’. Internal ground floors below this level could however be occupied by either Less Vulnerable commercial premises, garages or non-sleeping residential rooms (e.g. kitchen, study, lounge) (i.e. applying a sequential approach within a building).</td>
<td></td>
</tr>
<tr>
<td>New non-residential development (e.g. Less Vulnerable)</td>
<td>Finished floor levels may not need to be raised. For example, Less Vulnerable developments can be designed to be floodable instead of raising floor levels, and this may be beneficial to help minimise the impact of the development on the displacement of floodwater and the risk of flooding to the surrounding area. However, it is strongly</td>
<td></td>
</tr>
</tbody>
</table>
Development Type

<table>
<thead>
<tr>
<th></th>
<th>Flood Zone 3</th>
<th>Flood Zone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basements</td>
<td>Basements, basement extensions, conversions of basements to a higher vulnerability classification or self-contained units are not permitted in Flood Zone 3b. Self-contained residential basements and bedrooms at basement level are not permitted in Flood Zone 3a. Internal access to a higher floor situated 300mm above the 1% annual probability flood level (1 in 100 year) including climate change must be provided for all other basements, basement extensions and conversions.</td>
<td>All basements, basement extensions and conversions must have internal access to a higher floor situated 300mm above the 1% annual probability flood level (1 in 100 year) including climate change.</td>
</tr>
<tr>
<td>Recommended</td>
<td>Internal access is provided to upper floors (first floor or a mezzanine level) to provide safe refuge in a flood event (refer to Section 5.6). Such refuges will have to be permanent and accessible to all occupants and users of the site and a FWEP should be prepared to document the actions to take in the event of a flood (refer Section 5.11).</td>
<td></td>
</tr>
</tbody>
</table>

5.4 Flood Resistance ‘Water Exclusion Strategy’

5.4.1 There is a range of flood resistance and resilience construction techniques that can be implemented in new developments to mitigate potential flood damage. The Department for Communities and Local Government (CLG) have published a document ‘Improving the Flood Performance of New Buildings, Flood Resilient Construction’, the aim of which is to provide guidance to developers and designers on how to improve the resistance and resilience of new properties to flooding through the use of suitable materials and construction details. Figure 5-1 provides a summary of the Water Exclusion Strategy (flood resistance measures) and Water Entry Strategy (flood resilience measures) which can be adopted depending on the depth of floodwater that could be experienced.
5.4.2 Resistance measures are aimed at preventing water ingress into a building (Water Exclusion Strategy); they are designed to minimise the impact of floodwaters directly affecting buildings and to give occupants more time to relocate ground floor contents. These measures will probably only be effective for short duration, low depth flooding, i.e. less than 0.3m, although these measures should be adopted where depths are between 0.3m and 0.6m and there are no structural concerns.

In areas at risk of flooding of low depths (<0.3m), implement flood resistance measures such as:

- Using materials and construction with low permeability.
- Land raising.
- Landscaping e.g. creation of low earth bunds (subject to this not increasing flood risk to neighbouring properties).
- Raising thresholds and finished floor levels e.g. porches with higher thresholds than main entrance.
- Flood gates with waterproof seals.
- Sump and pump for floodwater to remove waste faster than it enters.

5.4.3 There are a range of property flood protection devices available on the market which are designed specifically to resist the passage of floodwater (Figure 5-2 and Figure 5-3). These include removable flood barriers and gates designed to fit openings, vent covers and stoppers designed to fit WCs. These measures can be appropriate for preventing water entry associated with fluvial flooding as well as surface water and sewer flooding. The efficacy of such devices relies on their being deployed before a flood event occurs. It should also be...
borne in mind that devises such as air vent covers, if left in place by occupants as a precautionary measure, may compromise safe ventilation of the building in accordance with Building Regulations.

![Figure 5-2 Examples of flood barriers, air bricks and non-return valves](image)

Figure 5-2 Examples of flood barriers, air bricks and non-return valves

![Figure 5-3 Example of flood gates](image)

Figure 5-3 Example of flood gates

5.5 Flood Resilience ‘Water Entry Strategy’

5.5.1

For flood depths greater than 0.6m, it is likely that structural damage could occur in traditional masonry construction due to excessive water pressures. In these circumstances, the strategy should be to allow water into the building, but to implement careful design in order to minimise damage and allow rapid re-occupancy. This is referred to as the Water Entry Strategy. These measures are appropriate for uses where temporary disruption is acceptable and suitable flood warning is received.

5.5.2

Materials should be used which allow the passage of water whilst retaining their structural integrity and they should also have good drying and cleaning properties. Alternatively sacrificial materials can be included for internal and external finishes; for example the use of gypsum plasterboard which can be removed and replaced following a flood event.
resilient fittings should be used to at least 0.1m above the design flood level. Resilience measures are either an integral part of the building fabric or are features inside a building that will limit the damage caused by floodwaters.

In areas at risk of frequent or prolonged flooding, implement flood resilience measures such as:

- Use materials with either, good drying and cleaning properties, or, sacrificial materials that can easily be replaced post-flood.
- Design for water to drain away after flooding.
- Design access to all spaces to permit drying and cleaning.
- Raise the level of electrical wiring, appliances and utility metres.
- Coat walls with internal cement based renders; apply tanking on the inside of all internal walls.
- Ground supported floors with concrete slabs coated with impermeable membrane.
- Tank basements, cellars or ground floors with water resistant membranes.
- Use plastic water resistant internal doors.

5.5.3 Further specific advice regarding suitable materials and construction techniques for floors, walls, doors and windows and fittings can be found in ‘Improving the Flood Performance of New Buildings, Flood Resilient Construction’ 29.

Structures

5.5.4 Structures such as (bus, bike) shelters, park benches and refuse bins (and associated storage areas) located in areas with a high flood risk should be flood resilient and be firmly attached to the ground and designed in such a way as to prevent entrainment of debris which in turn could increase flood risk and/or breakaway posing a danger to life during high flows.

5.6 Safe Access and Egress

5.6.1 Safe access and egress is required to enable the evacuation of people from the development, provide the emergency services with access to the development during times of flood and enable flood defence authorities to carry out any necessary duties during periods of flood.

5.6.2 A safe access/egress route should allow occupants to safely enter and exit the buildings and be able to reach land outside the flooded area (e.g. within Flood Zone 1) using public rights of way without the intervention of emergency services or others during design flood conditions, including climate change allowances. This is of particular importance when contemplating development on sites located on dry islands (as described in Section 3.10).

5.6.3 Guidance prepared by the Environment Agency 30 uses a calculation of flood hazard to determine safety in relation to flood risk. Flood hazard is a function of the flood depth and flow velocity at a particular point in the floodplain along with a suitable debris factor to account for the hazard posed by any material entrained by the floodwater. The derivation of flood hazard is based on the methodology in Flood Risks to People FD2320, the use of which for the purpose of planning and development control is clarified in the abovementioned publication.

Table 5-2 Hazard to People Rating \((HR=d \times (v +0.5)+DF) \) (Table 13.1 FD2320/TR2)

<table>
<thead>
<tr>
<th>Flood Hazard (HR)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 0.75</td>
<td>Very low hazard – Caution</td>
</tr>
<tr>
<td>0.75 to 1.25</td>
<td>Dangerous for some – includes children, the elderly and the infirm</td>
</tr>
<tr>
<td>1.25 to 2.0</td>
<td>Dangerous for most – includes the general public</td>
</tr>
<tr>
<td>More than 2.0</td>
<td>Dangerous for all – includes the emergency services</td>
</tr>
</tbody>
</table>

For developments located in areas at risk of fluvial flooding safe access / egress must be provided for new development as follows in order of preference:

- Safe dry route for people and vehicles.
- Safe dry route for people.
- If a dry route for people is not possible, a route for people where the flood hazard (in terms of depth and velocity of flooding) is low and should not cause risk to people.
- If a dry route for vehicles is not possible, a route for vehicles where the flood hazard (in terms of depth and velocity of flooding) is low to permit access for emergency vehicles. However the public should not drive vehicles in floodwater.

In all these cases, a ‘dry’ access/egress is a route located above the 1% annual probability flood level (1 in 100 year) including an allowance for climate change.

Safe Refuge

5.6.4 In exceptional circumstances, dry access above the 1% annual probability (1 in 100 year) flood level including climate change may not be achievable. In these circumstances the Environment Agency and Elmbridge BC should be consulted to ensure that the safety of the site occupants can be satisfactorily managed. This will be informed by the type of development, the number of occupants and their vulnerability and the flood hazard along the proposed egress route. For example, this may entail the designation of a safe place of refuge on an upper floor of a building, from which the occupants can be rescued by emergency services. It should be noted that sole reliance on a safe place of refuge is a last resort, and all other possible means to evacuate the site should be considered first. Provision of a safe place of refuge will not guarantee that an application will be granted.

5.7 Floodplain Compensation Storage

All new development within Flood Zone 3 must not result in a net loss of flood storage capacity. Where possible, opportunities should be sought to achieve an increase in the provision of floodplain storage.

5.7.1 Where proposed development results in a change in building footprint, the developer must ensure that it does not impact upon the ability of the floodplain to store water, and should seek opportunities to provide a betterment with respect to floodplain storage.

5.7.2 Similarly, where ground levels are elevated to raise the development out of the floodplain, compensatory floodplain storage within areas that currently lie outside the floodplain must be provided to ensure that the total volume of the floodplain storage is not reduced.

5.7.3 As depicted in Figure 5-4, floodplain compensation must be provided on a level for level, volume for volume basis on land which does not already flood and is within the site boundary. Where land is not within the site boundary, it be in the immediate vicinity, in the applicant’s
ownership and linked to the site31. Floodplain compensation must be considered in the context of the 1% annual probability (1 in 100 year) flood level including an allowance for climate change. When designing a scheme flood water must be able to flow in and out and must not pond. An FRA must demonstrate that there is no loss of flood storage capacity and include details of an appropriate maintenance regime to ensure mitigation continues to function for the life of the development. Guidance on how to address floodplain compensation is provided in Appendix A3 of the CIRIA Publication C62432.

![Diagram of Floodplain Compensation Storage](image)

\section*{Figure 5-4 Example of Floodplain Compensation Storage (Environment Agency 2009)}

5.7.4 The requirement for no loss of floodplain storage means that it is not possible to modify ground levels on sites which lie completely within the floodplain (when viewed in isolation), as there is no land available for lowering to bring it into the floodplain. It is possible to provide off-site compensation within the local area e.g. on a neighbouring or adjacent site, or indirect compensation, by lowering land already within the floodplain, however, this would be subject to detailed investigations and agreement with the Environment Agency to demonstrate (using an appropriate flood model where necessary) that the proposals would improve and not worsen the existing flooding situation or could be used in combination with other measures to limit the impact on floodplain storage.

\section*{Flood Voids}

5.7.5 The use of under-floor voids with adequate openings beneath the raised finished floor levels can be considered for development in Flood Zone 2 and 3. They are generally considered to provide indirect compensation or mitigation, but not true compensation for loss of floodplain storage. The use of under-floor voids will typically require a legal agreement or planning condition and maintenance plan for them to remain open for the lifetime of the development and agreement that Elmbridge BC will enforce. Sole reliance on the use of under-floor voids to address the loss of floodplain storage capacity is generally not acceptable on undeveloped sites or for individual properties.

5.7.6 Should it not be possible to achieve all the level for level compensation required, the Environment Agency may consider that the remainder be provided through the use of under-floor voids instead. The amount of level for level compensation would need to be maximised.

31 In hydrological connectivity.

and any under-floor voids would need to be appropriately designed and kept clear to enable them to function effectively.

5.7.7 Ideally, void openings should be a minimum of 1m long and open from existing ground levels to at least the 1% annual probability (1 in 100 year) plus climate change flood level. By setting finished floor levels at 300mm above the design flood level, there is usually enough space provision for voids below. There should be a minimum of 1m of open void length per 5m length of wall. Void openings should be provided along all external walls of the proposed extension. If security is an issue, 10mm diameter vertical bars set at 100mm centres can be incorporated into the void openings. The Environment Agency is likely to seek confirmation from Elmbridge BC that the voids be maintained in a free and open condition for the lifetime of the development.

Car Parks

5.7.8 Where car parks are specified as areas for the temporary storage of surface water and fluvial floodwaters, flood depths should not exceed 300mm given that vehicles may be moved by water of greater depths. Where greater depths are expected, car parks should be designed to prevent the vehicles from floating out of the car park. Signs should be in place to notify drivers of the susceptibility of flooding and flood warning should be available to provide sufficient time for car owners to move their vehicles if necessary.

5.8 Flood Routing

All new development in Flood Zones 2 and 3 should not adversely affect flood routing and thereby increase flood risk elsewhere.

Opportunities should be sought within the site design to make space for water, such as:

- Removing boundary walls or replacing with other boundary treatments such as hedges, fences (with gaps).
- Considering alternatives to solid wooden gates, or ensuring that there is a gap beneath the gates to allow the passage of floodwater.
- On uneven or sloping sites, consider lowering ground levels to extend the floodplain without creating ponds. The area of lowered ground must remain connected to the floodplain to allow water to flow back to river when levels recede.
- Create under-croft car parks or consider reducing ground floor footprint and creating an open area under the building to allow flood water storage.
- Where proposals entail floodable garages or outbuildings, consider designing a proportion of the external walls to be committed to free flow of floodwater.

5.8.1 In order to demonstrate that ‘flood risk is not increased elsewhere’, development in the floodplain will need to prove that flood routing is not adversely affected by the development, for example giving rise to backwater affects or diverting floodwaters onto other properties.

5.8.2 Potential overland flow paths should be determined and appropriate solutions proposed to minimise the impact of the development, for example by configuring road and building layouts to preserve existing flow paths and improve flood routing, whilst ensuring that flows are not diverted towards other properties elsewhere.

5.8.3 Careful consideration should be given to the use of fences and landscaping walls so as to prevent causing obstruction to flow routes and increasing the risk of flooding to the site or neighbouring areas.
5.9 Riverside Development

Retain an 8 metre wide undeveloped buffer strip alongside Main Rivers and explore opportunities for riverside restoration. Retain a 5 metre wide buffer strip alongside Ordinary Watercourses. New development within 8m of a Main River or Ordinary Watercourse will require consent from either the Environment Agency or Surrey County Council (as LLFA) respectively.

5.9.1 The Environment Agency is likely to seek a 8 metre wide undeveloped buffer strip alongside main fluvial rivers for maintenance purposes, and would also ask developers to explore opportunities for riverside restoration as part of any development. Surrey County Council will seek a 5 metre wide undeveloped buffer strip to be retained alongside Ordinary Watercourses.

5.9.2 Under Section 109 of the Water Resources Act 1991 and/or Environment Agency Byelaws, any works within 8 metres of any statutory Main River (both open channels and culverted sections) requires Environment Agency consent. Whilst Flood Defence Consents are dealt with outside of the planning process, since requirements of the consenting process in relation to flood risk, biodiversity and pollution may result in changes to development proposals or construction methods, the Environment Agency aims to advise on such issues as part of its statutory consultee role in the planning process. Should proposed works not require planning permission the Environment Agency can be consulted regarding permission to do work on or near a river, floor or sea defence by contacting enquiries@environment-agency.gov.uk.

5.9.3 As of 6 April 2012 responsibility for the consenting of works by third parties on Ordinary watercourses under Section 23 of the Land Drainage Act 1991 (as amended by the Flood and Water Management Act 2010) has transferred from the Environment Agency to the Lead Local Flood Authority, Surrey County Council (SCC). SCC is now responsible for the consenting of works to ordinary watercourses and has powers to enforce un-consented and non-compliant works. This includes any works (including temporary) within 8 metres that affect flow within the channel (such as in channel structures or diversion of watercourses). Enquiries and applications for ordinary watercourse consent should be sent to landdrainage.consents@surreycc.gov.uk.

5.9.4 Consent will be refused if the works would result in an increase in flood risk, a prevention of operational access to the watercourse and/ or an unacceptable risk to nature conservation.

5.10 Surface Water Management

All major developments and other development should not result in an increase in surface water runoff, and where possible, should demonstrate betterment in terms of rate and volumes of surface water runoff.

Sustainable Drainage Systems (SuDS) should be used to reduce and manage surface water run-off to and from proposed developments as near to source as possible in accordance with the requirements of the Technical Standards and supporting guidance published by DCLG and Department for the Environment, Food and Rural Affairs (DEFRA). In line with the Elmbridge Core Strategy, SuDS must be implemented for sites in Flood Zone 2 and 3. SuDS must be considered for sites in Flood Zone 1.

34 Major development – 10 or more dwellings and 1000 sqm floorspace.
5.10.1 Suitable surface water management measures should be incorporated into new development designs in order to reduce and manage surface water flood risk to, and posed by the proposed development. This should ideally be achieved by incorporating (SuDS).

5.10.2 SuDS are typically softer engineering solutions inspired by natural drainage processes such as ponds and swales which manage water as close to its source as possible. Wherever possible, a SuDS technique should seek to contribute to each of the three goals identified below. Where possible SuDS solutions for a site should seek to:

1. Reduce flood risk (to the site and neighbouring areas),
2. Reduce pollution, and
3. Provide landscape and wildlife benefits.

5.10.3 Generally the aim should be to discharge surface water run-off as high up the following hierarchy of drainage options as reasonably practicable:

1. Into the ground (infiltration)
2. To a surface water body
3. To a surface water sewer, highway drain, or another drainage system
4. To a combined sewer

5.10.4 SuDS techniques can be used to reduce the rate and volume and improve the water quality of surface water discharges from sites to the receiving environment (i.e. natural watercourse or public sewer etc.). The SuDS Manual[^36] identified several processes that can be used to manage and control runoff from developed areas. Each option can provide opportunities for stormwater control, flood risk management, water conservation and groundwater recharge.

- **Infiltration**: the soaking of water into the ground. This is the most desirable solution as it mimics the natural hydrological process. The rate of infiltration will vary with soil type and condition, the antecedent conditions and with time. The process can be used to recharge groundwater sources and feed baseflows of local watercourses, but where groundwater sources are vulnerable or there is risk of contamination, infiltration techniques are not suitable.

- **Detention/Attenuation**: the slowing down of surface flows before their transfer downstream, usually achieved by creating a storage volume and a constrained outlet. In general, though the storage will enable a reduction in the peak rate of runoff, the total volume will remain the same, just occurring over a longer duration.

- **Conveyance**: the transfer of surface runoff from one place to another, e.g. through open channels, pipes and trenches.

- **Water Harvesting**: the direct capture and use of runoff on site, e.g. for domestic use (flushing toilets) or irrigation of urban landscapes. The ability of these systems to perform a flood risk management function will be dependent on their scale, and whether there will be a suitable amount of storage always available in the event of a flood.

5.10.5 As part of any SuDS scheme, consideration should be given to the long-term maintenance of the SuDS to ensure that it remains functional for the lifetime of the development. Table 5-3 has been reproduced from the SuDS Manual, CIRIA C697 and outlines typical SuDS techniques.

5.10.6 The application of SuDS is not limited to a single technique per site. Often a successful SuDS solution will utilise a combination of techniques, providing flood risk, pollution and landscape/wildlife benefits. In addition, SuDS can be employed on a strategic scale, for example with a number of sites contributing to large scale jointly funded and managed SuDS. It should be noted, each development site must offset its own increase in runoff and attenuation cannot be “traded” between developments.

Table 5-3 Typical SuDS Components (Y; primary process. * some opportunities, subject to design)

<table>
<thead>
<tr>
<th>Technique</th>
<th>Description</th>
<th>Conveyance</th>
<th>Detention</th>
<th>Infiltration</th>
<th>Harvesting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pervious Surfaces</td>
<td>Pervious surfaces allow rainwater to infiltrate through the surface into an underlying storage layer, where water is stored before infiltration to the ground, reuse, or release to surface water.</td>
<td>Y</td>
<td>Y</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Filter Drains</td>
<td>Linear drains/trenches filled with a permeable material, often with perforated pipe in the base of the trench. Surface water from the edge of paved areas flows into the trenches, is filtered and conveyed to other parts of the site.</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter Strips</td>
<td>Vegetated strips of gently sloping ground designed to drain water evenly from impermeable areas and filter out silt and particulates.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Swales</td>
<td>Shallow vegetated channels that conduct and/or retain water, and can permit infiltration when unlined.</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Ponds</td>
<td>Depressions used for storing and treating water.</td>
<td>Y</td>
<td>*</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Wetlands</td>
<td>As ponds, but the runoff flows slowly but continuously through aquatic vegetation that attenuates and filters the flow. Shallower than ponds. Based on geology these measures can also incorporate some degree of infiltration.</td>
<td>*</td>
<td>Y</td>
<td>*</td>
<td>Y</td>
</tr>
<tr>
<td>Detention Basin</td>
<td>Dry depressions designed to store water for a specified retention time.</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soakaways</td>
<td>Sub-surface structures that store and dispose of water via infiltration.</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Infiltration Trenches</td>
<td>As filter drains, but allowing infiltration through trench base and sides.</td>
<td>*</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Infiltration Basins</td>
<td>Depressions that store and dispose of water via infiltration.</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Green Roofs</td>
<td>Green roofs are systems which cover a building’s roof with vegetation. They are laid over a drainage layer, with other layers providing protection, waterproofing and insulation. It is noted that the use of brown/green roofs should be for betterment purposes and not to be counted towards the provision of on-site storage for surface water. This is because the hydraulic performance during extreme events is similar to a standard roof (CIRIA C697).</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>
The use of infiltration techniques is highly dependent on the underlying ground conditions. As part of this SFRA, an assessment of the suitability of using infiltration SuDS techniques across the Borough has been undertaken using the detailed BGS Infiltration SuDS Map. Detail about this dataset is provided in Section 2.3.

Appendix B, Figure B6 Infiltration SuDS Map
Appendix E Settlement Area Schedules

In broad terms, areas along the Main River valleys and the northern parts of Elmbridge BC area have the greatest constraints on the use of SuDS, and in particular in those areas where the depth to the water table is less than 3m below the ground surface.

The areas with most potential for widespread use of infiltration SuDS are those in the centre and west of the Borough (Esher and Weybridge) which are underlain by Bagshot Formation, a permeable sandy material and where the depth to the water table is greater than 5m below the ground surface.

Detention measures are not constrained by geology, though in areas of permeable geology, there will also be a degree of infiltration of runoff taking place.

Technical Standards and supporting guidance

A set of non-statutory Technical Standards have been published, to be used in conjunction with supporting guidance in the PPG, which set the requirements for the design, construction, maintenance and operation of sustainable drainage systems (SuDS).

The Technical Standards that are of chief concern in relation to the consideration of flood risk to and from development relating to peak flow control and volume control are presented below:

Peak flow control

S2 For **greenfield developments**, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.

S3 For **developments which were previously developed**, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.

Volume control

S4 Where reasonably practicable, for **greenfield development**, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour
rainfall event should never exceed the greenfield runoff volume for the same event.

S5 Where reasonably practicable, for developments which have been previously developed, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.

S6 Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body in accordance with S4 or S5 above, the runoff volume must be discharged at a rate that does not adversely affect flood risk.

Flood risk within the development

S7 The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur on any part of the site for a 1 in 30 year rainfall event.

S8 The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur during a 1 in 100 year rainfall event in any part of: a building (including a basement); or in any utility plant susceptible to water (e.g. pumping station or electricity substation) within the development.

S9 The design of the site must ensure that, so far as is reasonably practicable, flows resulting from rainfall in excess of a 1 in 100 year rainfall event are managed in exceedance routes that minimise the risks to people and property.

5.10.13 From 6 April 2015, all major development\(^{37}\) should include provision for SuDS. The Lead Local Flood Authority is a statutory consultee for these schemes and a Model Surface Water Drainage Statement will need to be completed and signed by a competent drainage engineer to accompany any planning application\(^{38}\). This must be cross-referenced within an FRA where appropriate. This will be a validation requirement for all major planning applications once the Council has updated its validation checklist. Applicants are strongly encouraged to discuss their proposals with Surrey County Council at the pre-application stage. A request can be made via flooding.enquiries@surreycc.gov.uk. The Lead Local Flood Authorities of South East England have also produced a useful document outlining the process for integrating SuDS into developments\(^{39}\). For smaller schemes located within Flood Zones 2 and 3, SuDs will need to be addressed as part of an FRA and will be assessed by Elmbridge BC.

5.11 Flood Warning and Evacuation Plans

5.11.1 Evacuation is where flood alerts and warnings provided by the Environment Agency enable timely actions by residents or occupants to allow evacuation to take place unaided, i.e. without the deployment of trained personnel to help people from their homes, businesses and other premises. Rescue by the emergency services is likely to be required where flooding has occurred and prior evacuation has not been possible.

For all developments (excluding minor developments and change of use) proposed in Flood Zone 2 or 3, a Flood Warning and Evacuation Plan should be prepared to demonstrate what actions site users will take before, during and after a flood event to ensure their safety, and to demonstrate their development will not impact on the ability of the local authority and the

\(^{37}\) Major development as defined in the Town and County Planning (Development Management Procedure) (England) Order 2010

\(^{39}\) Water, People, Places: A guide for master planning sustainable drainage into development – to be made available on Surrey County Council’s website In due course
emergency services to safeguard the current population.

For sites in Flood Zone 1 that are located on ‘dry islands’ (as described in Section 3.10), it may also be necessary to prepare a Flood Warning and Evacuation Plan to determine potential egress routes away from the site through areas that may be at risk of flooding during the 1% annual probability (1 in 100 year) flood event including an allowance for climate change.

The Environment Agency has a tool on their website to create a Personal Flood Plan. The Plan comprises a checklist of things to do before, during and after a flood and a place to record important contact details. Where proposed development comprises non-residential extension <250m² and householder development (minor development), it is recommended that the use of this tool to create a Personal Flood Plan will be appropriate.

5.11.2 Flood Warning and Evacuation Plans should include:

How flood warning is to be provided, such as:

- availability of existing flood warning systems (refer Table 5-4);
- where available, rate of onset of flooding and available flood warning time; and
- how flood warning is given.

What will be done to protect the development and contents, such as:

- How easily damaged items (including parked cars) or valuable items (important documents) will be relocated;
- How services can be switched off (gas, electricity, water supplies);
- The use of flood protection products (e.g. flood boards, airbrick covers);
- The availability of staff/occupants/users to respond to a flood warning, including preparing for evacuation, deploying flood barriers across doors etc.; and
- The time taken to respond to a flood warning.

Ensuring safe occupancy and access to and from the development, such as:

- Occupant awareness of the likely frequency and duration of flood events, and the potential need to evacuate;
- Safe access route to and from the development;
- If necessary, the ability to maintain key services during an event;
- Vulnerability of occupants, and whether rescue by emergency services will be necessary and feasible; and
- Expected time taken to re-establish normal use following a flood event (clean-up times, time to re-establish services etc.)

5.11.3 There is no statutory requirement for the Environment Agency or the emergency services to approve evacuation plans. Elmbridge BC is accountable via planning condition or agreement

to ensure that plans are suitable. This should be done in consultation with emergency planning staff.

Flood Warning Areas and Emergency Rest Centres

Appendix B, Figure B9 Flood Warning Areas and Rest Centres

5.11.4 There are 9 flood warning areas within the Borough, as shown in Figure B9 and Table 5-4. The Environment Agency issues flood warnings to residents and businesses that have registered for the service in these specific areas when flooding is expected.

Table 5-4 Environment Agency Flood Warning Areas (refer to Figure B9)

<table>
<thead>
<tr>
<th>Watercourse</th>
<th>Environment Agency Flood Warning Area (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Wey</td>
<td>Properties between Walsham Meadow and Byfleet Town</td>
</tr>
<tr>
<td></td>
<td>Wisley and Byfleet</td>
</tr>
<tr>
<td></td>
<td>Weybridge</td>
</tr>
<tr>
<td>Thames</td>
<td>Hamm Court</td>
</tr>
<tr>
<td></td>
<td>Walton</td>
</tr>
<tr>
<td></td>
<td>East and West Molesey</td>
</tr>
<tr>
<td></td>
<td>Thames Ditton</td>
</tr>
<tr>
<td></td>
<td>Thames Ditton Island</td>
</tr>
<tr>
<td>Mole</td>
<td>Esher and East Molesey</td>
</tr>
<tr>
<td></td>
<td>Stoke D’Abermon, Cobham and South Hersham</td>
</tr>
</tbody>
</table>

5.11.5 Elmbridge BC has 7 emergency rest centres as identified in Appendix B, Figure B9 in the urban areas of Weybridge (Churchfield Road), Walton (Manor Road), East Molesey (Bishops Fox Way), Thames Ditton (Mercer Close), Claygate (Elm Road), Hersham (Queen’s Road) and Cobham (Oakdene Road). It should be noted that although these have been identified as emergency rest centres, whether each of the centres are operational during a flood event is dependent upon the locations and extent of flooding across the Borough at that particular time. The Multi Agency Flood Plan prepared by Elmbridge BC will provide more detail on the appropriate use of each rest centre.

Appendix B, Figure B9 Flood Warning Areas and Rest Centres

Appendix E Settlement Area Schedules
6 GUIDANCE FOR SITE-SPECIFIC FRAS

6.1 What is a Flood Risk Assessment?

6.1.1 A site-specific FRA is a report suitable for submission with a planning application which provides an assessment of flood risk to and from a proposed development, and demonstrates how the proposed development will be made safe, will not increase flood risk elsewhere and where possible will reduce flood risk overall in accordance with Core Strategy Policy CS26: Flooding, paragraph 100 of the NPPF and PPG. An FRA must be prepared by a suitably qualified and experienced person and must contain all the information needed to allow Elmbridge BC to satisfy itself that the requirements have been met.

6.2 When is a Flood Risk Assessment required?

The NPPF states that a site-specific FRA is required in the following circumstances:

- Proposals for new development (including minor development\(^{41}\) and change of use) in Flood Zones 2 and 3.
- Proposals for new development (including minor development and change of use) in an area within Flood Zone 1 which has critical drainage problems (as notified to the LPA by the Environment Agency)\(^{42}\).
- Proposals of 1 hectare or greater in Flood Zone 1.
- Where proposed development or a change of use to a more vulnerable class may be subject to other sources of flooding.

6.3 How detailed should a FRA be?

6.3.1 The PPG states that site-specific FRAs should be proportionate to the degree of flood risk, the scale and nature of the development, its vulnerability classification (Table 4-1) and the status of the site in relation to the Sequential and Exception Tests. Site-specific FRAs should also make optimum use of readily available information, for example the mapping presented within this SFRA and available on the Environment Agency website, although in some cases additional modelling or detailed calculations will need to be undertaken. For example, where the development is an extension to an existing house (for which planning permission is required) which would not significantly increase the number of people present in an area at risk of flooding, Elmbridge BC would generally need a less detailed assessment to be able to reach an informed decision on the planning application. For a new development comprising a greater number of houses in a similar location, or one where the flood risk is greater Elmbridge BC may require a more detailed assessment, for example, the preparation of site-specific hydraulic modelling to determine the flood risk to and from the site pre and post-development, and the effectiveness of any management and mitigation measures incorporated within the design.

\(^{41}\) According to the PPG, minor development means:

- **minor non-residential extensions**: industrial / commercial / leisure etc. extensions with a footprint <250m\(^2\).
- **alterations**: development that does not increase the size of buildings e.g. alterations to external appearance.
- **householder development**: for example; sheds, garages, games rooms etc. within the curtilage of the existing dwelling, in addition to physical extensions to the existing dwelling itself. This definition excludes any proposed development that would create a separate dwelling within the curtilage of the existing dwelling e.g. subdivision of houses into flats.

\(^{42}\) Consultation has confirmed that there are no areas with critical drainage problems identified by the Environment Agency.
6.3.2 As a result, the scope of each site-specific FRA will vary considerably. Table 6-1 presents the different levels of site-specific FRA as defined in the CIRIA publication C624\(^3\) and identifies typical sources of information that can be used. Sufficient information must be included to enable the Council and where appropriate, consultees, to determine that the proposal will be safe for its lifetime, not increase flood risk elsewhere and where possible, reduce flood risk overall. Failure to provide sufficient information will result in applications being refused.

Table 6-1 Levels of Site-Specific Flood Risk Assessment

<table>
<thead>
<tr>
<th>Description</th>
<th>Study to identify whether there are any flooding or surface water management issues related to a development site that may warrant further consideration. This should be based on readily available existing information. The screening study will ascertain whether a FRA Level 2 or 3 is required.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical sources of information include:</td>
<td></td>
</tr>
<tr>
<td>Elbridge BC SFRA</td>
<td></td>
</tr>
<tr>
<td>Flood Map for Planning (Rivers and Sea)</td>
<td></td>
</tr>
<tr>
<td>Environment Agency Standing Advice</td>
<td></td>
</tr>
<tr>
<td>NPPF Tables 1, 2 and 3</td>
<td></td>
</tr>
</tbody>
</table>

Level 2 Scoping study to be undertaken if the Level 1 FRA indicates that the site may lie within an area that is at risk of flooding, or the site may increase flood risk due to increased run-off. This study should confirm the sources of flooding which may affect the site. The study should include:

- An appraisal of the availability and adequacy of existing information;
- A qualitative appraisal of the flood risk posed to the site, and potential impact of the development on flood risk elsewhere; and
- An appraisal of the scope of possible measures to reduce flood risk to acceptable levels.

The scoping study may identify that sufficient quantitative information is already available to complete a FRA appropriate to the scale and nature of the development.

Typical sources of information include those listed above, plus:

- Local policy statements or guidance.
- Lower Thames Catchment Flood Management Plan.
- Surrey County Council PFRA and LFRMS.
- Data request from the EA to obtain result of existing hydraulic modelling studies relevant to the site and outputs such as maximum flood level, depth and velocity.
- Consultation with EA/SCC/sewerage undertakers and other flood risk consultees to gain information and to identify in broad terms, what issues related to flood risk need to be considered including other sources of flooding.
- Historic maps.
- Interviews with local people and community groups.
- Walkover survey to assess potential sources of flooding, likely routes for floodwaters, the key features on the site including flood defences, their condition.
- Site survey to determine general ground levels across the site, levels of any formal or informal flood defences

Level 3 Detailed study to be undertaken if a Level 2 FRA concludes that further quantitative analysis is required to assess flood risk issues related to the development site. The study should include:

- Quantitative appraisal of the potential flood risk to the development;
- Quantitative appraisal of the potential impact of the development site on flood risk elsewhere; and
- Quantitative demonstration of the effectiveness of any proposed mitigations measures.

\(^3\) CIRIA, 2004, Development and flood risk – guidance for the construction industry C624.
Typical sources of information include those listed above, plus:

- Detailed topographical survey.
- Detailed hydrographic survey.
- Site-specific hydrological and hydraulic modelling studies which should include the effects of the proposed development.
- Monitoring to assist with model calibration/verification.
- Continued consultation with the LPA, Environment Agency and other flood risk consultees.

Environment Agency Data Requests

6.3.3 The Environment Agency offers a series of ‘products’ for obtaining flood risk information suitable for informing the preparation of site-specific FRAs as described on their website https://www.gov.uk/planning-applications-assessing-flood-risk.

- **Products 1 – 4** relate to mapped deliverables including flood level and flood depth information and the presence of flood defences local to the proposed development site;

- **Product 5** contains the reports for hydraulic modelling of the Main Rivers;

- **Product 6** contains the model output data so the applicant can interrogate the data to inform the FRA.

- **Product 7** comprises the hydraulic model itself.

6.3.4 Products 1 – 6 can be used to inform a Level 2 FRA. In some cases, it may be appropriate to obtain Product 7 and to use as the basis for developing a site-specific model for a proposed development as part of a Level 3 FRA. This can be requested via either their National Customer Contact Centre via enquiries@environment-agency.gov.uk or the Customer and Engagement Team via KSLEnquiries@environment-agency.gov.uk.

Modelling of Ordinary Watercourses

6.3.5 It should be noted that the scope of modelling studies undertaken by the Environment Agency typically cover flooding associated with Main Rivers, and therefore Ordinary Watercourses that form tributaries to the Main Rivers may not always be included in the model. Where a proposed development site is in close proximity to an Ordinary Watercourse and either no modelling exists, or the available modelling is considered to provide very conservative estimates of flood extents (due to the use of national generalised JFLOW modelling), applicants may need to prepare a simple hydraulic model to enable more accurate assessment of the probability of flooding associated with the watercourse and to inform the site-specific FRA. This should be carried out in line with industry standards and in agreement with the Environment Agency and Surrey County Council (as the LLFA).

6.4 What needs to be addressed in a Flood Risk Assessment?

6.4.1 The PPG states that the objectives of a site-specific flood risk assessment are to establish:

- whether a proposed development is likely to be affected by current or future flooding from any source;
- whether it will increase flood risk elsewhere;
- whether the measures proposed to deal with these effects and risks are appropriate;
- the evidence for the local planning authority to apply (if necessary) the Sequential Test, and;
whether the development will be safe and pass the Exception Test, if applicable.

6.5 Flood Risk Assessment Checklist

6.5.1 Table 6-2 provides a checklist for site-specific FRAs including the likely information that will need to be provided along with references to sources of relevant information. As described in Section 6.3, the exact level of detail required under each heading will vary according to the scale of development and the nature of the flood risk. It is expected that this Checklist is completed for all planning applications. This will be a validation requirement once the Council has updated its validation checklist and proposals that are submitted without the completed Checklist will be regarded as invalid.

Table 6-2 Site-Specific Flood Risk Assessment Checklist (building on guidance in PPG)

<table>
<thead>
<tr>
<th>What to Include in the FRA</th>
<th>Source(s) of Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Site Description</td>
<td></td>
</tr>
<tr>
<td>Site address</td>
<td>-</td>
</tr>
<tr>
<td>Site description</td>
<td>-</td>
</tr>
<tr>
<td>Location plan</td>
<td>Including geographical features, street names, catchment areas, watercourses and other bodies of water</td>
</tr>
<tr>
<td>Site plan</td>
<td>Plan of site showing development proposals and any structures which may influence local hydraulics e.g. bridges, pipes/ducts crossing watercourses, culverts, screens, embankments, walls, outfalls and condition of channel</td>
</tr>
<tr>
<td>Topography</td>
<td>Include general description of the topography local to the site. Where necessary, site survey may be required to confirm site levels (in relation to Ordnance datum). Plans showing existing and proposed levels.</td>
</tr>
<tr>
<td>Geology</td>
<td>General description of geology local to the site.</td>
</tr>
<tr>
<td>Watercourses</td>
<td>Identify Main Rivers and Ordinary Watercourses local to the site.</td>
</tr>
<tr>
<td>Status</td>
<td>Is the development in accordance with the Council’s Spatial Strategy as set out in CS1?</td>
</tr>
</tbody>
</table>

2. Assessing Flood Risk

The level of assessment will depend on the degree of flood risk and the scale, nature and location of the proposed development. Refer to Table 5-1 regarding the levels of assessment. Not all of the prompts listed below will be relevant for every application.

<table>
<thead>
<tr>
<th>Flooding from Rivers</th>
<th>Source(s) of Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide a plan of the site and Flood Zones.</td>
<td>SFRA Appendix C</td>
</tr>
<tr>
<td>Identify any historic flooding that has affected the site, including dates and depths where possible.</td>
<td>Environment Agency Flood Map for Planning (Rivers and Sea).</td>
</tr>
<tr>
<td>How is the site likely to be affected by climate change?</td>
<td>Environment Agency Products 1-7.</td>
</tr>
<tr>
<td>Determine flood levels on the site for the 1% annual probability (1 in 100 chance each year) flood event including an allowance for climate change.</td>
<td>New hydraulic model.</td>
</tr>
<tr>
<td>Determine flood hazard on the site (in terms of flood depth and velocity).</td>
<td></td>
</tr>
<tr>
<td>Undertake new hydraulic modelling to determine the flood level, depth, velocity, hazard, rate of onset of flooding on the site.</td>
<td></td>
</tr>
</tbody>
</table>
| Flooding from Land | Identify any historic flooding that has affected the site.
Review the local topography and conduct a site walkover to determine low points at risk of surface water flooding.
Review the Risk of Flooding from Surface Water mapping.
Where necessary, undertake modelling to assess surface water flood risk. | SFRA Appendix D. Topographic survey.
Site walkover.
Risk of Flooding from Surface Water mapping (EA website).
New modelling study. |
| Flooding from Groundwater | Desk based assessment based on high level BGS mapping in the SFRA.
Ground survey investigations.
Identify any historic flooding that has affected the site. | SFRA Appendix B, Figure B2, B3, B5.
Ground Investigation Report |
| Flooding from Sewers | Identify any historic flooding that has affected the site. | Refer SFRA Section 3.13, Appendix B Figures B7 and B8.
Where appropriate an asset location survey can be provided by Thames Water Utilities Ltd
http://www.thameswater-propertysearches.co.uk/ |
| Reservoirs, canals and other artificial sources | Identify any historic flooding that has affected the site.
Review the Risk of Flooding from Reservoirs mapping. | Risk of Flooding from Reservoirs mapping (EA website). Refer SFRA Section 3.14. |

3. Proposed Development

| Current use | Identify the current use of the site. | - |
| Proposed use | Will the proposals increase the number of occupants / site users on the site such that it may affect the degree of flood risk to these people? | - |
| Vulnerability Classification | Determine the vulnerability classification of the development. Is the vulnerability classification appropriate within the Flood Zone? | SFRA Table 4-1
SFRA Table 4-2 |

4. Avoiding Flood Risk

| Sequential Test | Determine whether the Sequential Test is required.
Consult Elmbridge BC to determine if the site has been included in the Sequential Test.
If required, present the relevant information to Elmbridge BC to enable their determination of the Sequential Test for the site on an individual basis. | SFRA Section 4.3 |
| Exception Test | Determine whether the Exception Test is necessary.
Where the Exception Test is necessary, present details of:
Part 1) how the proposed development contributes to the achievement of wider sustainability objectives as set out in the Elmbridge BC Sustainability Appraisal Scoping Report.
(Details of how part 2) can be satisfied are addressed in the following part 5 ‘Managing and Mitigating Flood Risk’.) | SFRA Table 4-2
Refer to Elmbridge SA Scoping Report sustainability objectives presented in SFRA Table 4-3. |

5. Managing and Mitigating Flood Risk

Section 5 of the SFRA presents measures to manage and mitigate flood risk and when they should be implemented. Where appropriate, the following should be demonstrated within the FRA to address the following questions:

How will the site/building be protected from flooding, including the potential impacts of climate change, over the development’s lifetime?

How will you ensure that the proposed development and the measures to protect your site from flooding will not increase flood risk elsewhere?
Are there any opportunities offered by the development to reduce flood risk elsewhere? What flood-related risks will remain after you have implemented the measures to protect the site from flooding (i.e. residual risk) and how and by whom will these be managed over the lifetime of the development (e.g. flood warning and evacuation procedures)?

<table>
<thead>
<tr>
<th>Development Layout and Sequential Approach</th>
<th>Plan showing how sensitive land uses have been placed in areas within the site that are at least risk of flooding.</th>
<th>SFRA Section 5.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finished Floor Levels</td>
<td>Plans showing finished floor levels in the proposed development in relation to Ordnance Datum taking account of indicated flood depths.</td>
<td>SFRA Section 5.3</td>
</tr>
<tr>
<td>Flood Resistance</td>
<td>Details of flood resistance measures that have been incorporated into the design. Include design drawings where appropriate.</td>
<td>SFRA Section 5.4</td>
</tr>
<tr>
<td>Flood Resilience</td>
<td>Details of flood resilience measures that have been incorporated into the design. Include design drawings where appropriate.</td>
<td>SFRA Section 5.5</td>
</tr>
<tr>
<td>Safe Access / Egress</td>
<td>Provide a figure showing proposed safe route of escape away from the site and/or details of safe refuge. Include details of signage that will be included on site. Where necessary this will involve mapping of flood hazard associated with river flooding. This may be available from Environment Agency modelling, or may need to be prepared as part of hydraulic modelling specific for the proposed development site.</td>
<td>SFRA Section 5.6</td>
</tr>
<tr>
<td>Floodplain Compensation Storage</td>
<td>Provide calculations or results of a hydraulic modelling study to demonstrate that the proposed development provides compensatory flood storage and either will not increase flood risk to neighbouring areas or will result in an overall improvement. This should be located and designed to achieve level for level and volume for volume compensation, should be provided on land that is in hydrological continuity with the site within the applicant’s ownership and subject to appropriate maintenance regimes for its lifetime. Include cross sectional drawings clearly showing existing and proposed site levels.</td>
<td>SFRA Section 5.7</td>
</tr>
<tr>
<td>Flow Routing</td>
<td>Provide evidence that proposed development will not impact flood flows to the extent that the risk to surrounding areas is increased. Where necessary this may require modelling.</td>
<td>SFRA Section 5.8</td>
</tr>
<tr>
<td>Riverside Development Buffer Zone</td>
<td>Provide plans showing how a buffer zone of relevant width will be retained adjacent to any Main River or Ordinary Watercourse in accordance with requirements of the Environment Agency or Surrey County Council.</td>
<td>SFRA Section 5.9</td>
</tr>
<tr>
<td>Surface Water Management</td>
<td>Completion of SuDS Proforma for all major development proposals in Flood Zones 1, 2 or 3. Details of the following within FRA for all other developments located within Flood Zones 2 and 3: Calculations (and plans) showing areas of the site that are permeable and impermeable pre and post-development. Calculations of pre and post-development runoff rates and volumes including consideration of climate change over the lifetime of the development. Details of the methods that will be used to manage surface water (e.g. permeable paving, swales, wetlands, rainwater harvesting). Where appropriate, reference the supporting Outline or Detailed Drainage Strategy for the site. Information on proposed management arrangements</td>
<td>Surrey County Council website - http://new.surreycc.gov.uk/people-and-community/emergency-planning-and-community-safety/flooding-advice/more-about-flooding/suuds-planning-advice</td>
</tr>
<tr>
<td>Flood Warning and Evacuation Plan</td>
<td>Where appropriate reference the Flood Warning and Evacuation Plan or Personal Flood Plan that has been prepared for the proposed development (or will be prepared by site owners).</td>
<td>SFRA Section 5.11</td>
</tr>
</tbody>
</table>
6.6 Pre-application Advice

6.6.1 At all stages, Elmbridge BC, and where necessary the Environment Agency, Surrey County Council and/or the Statutory Water Undertaker may need to be consulted to ensure the FRA provides the necessary information to fulfil the requirements for planning applications.

6.6.2 The Environment Agency, Surrey County Council and Elmbridge BC each offer pre-application advice services which should be used to discuss particular requirements for specific applications.

- Elmbridge BC http://www.elmbridge.gov.uk/planning/enquiryservice.htm
- Surrey County Council flooding.enquiries@surreycc.gov.uk

6.6.3 The following government guidance sets out when LPAs should consult with the Environment Agency on planning applications https://www.gov.uk/flood-risk-assessment-local-planning-authorities. This has also been included in Table 7-1.
7 FLOOD RISK POLICY AND DEVELOPMENT MANAGEMENT APPROACH

7.1 Overview

7.1.1 In order to encourage a holistic approach to flood risk management and ensure that flooding is taken into account at all stages of the planning process, this Section builds on the findings of the SFRA to set out the approach that Elmbridge BC are adopting in relation to flood risk planning policy and with respect to development management decisions on a day-to-day basis.

7.1.2 Section 7.2 sets out the overarching policy approach for planning decisions within each of the NPPF Flood Zones and with respect to a number of specific types of planning application. Section 7.3 presents a guide to the measures that should be considered for different types of proposed development within each of the NPPF Flood Zones.

7.2 Policy Approach

7.2.1 The overall approach for development in each NPPF Flood Zone is set out below:

Flood Zone 3b Functional Floodplain

7.2.2 The Functional Floodplain as defined in this SFRA by Elmbridge BC comprises undeveloped land within the 5% annual probability (1 in 20 year) flood outline. These areas should be safeguarded from any development.

7.2.3 Where Water Compatible or Essential Infrastructure cannot be located elsewhere, it must:

- Remain operational and safe for users in times of flood;
- Result in no net loss of flood storage;
- Not impede water flows; and
- Not increase flood risk elsewhere.

7.2.4 Within the outline of the 5% annual probability (1 in 20 year) flood extent there are areas of existing development which are prevented from flooding by the presence of existing infrastructure or solid buildings. In these developed areas, existing built footprints, where it can be demonstrated that they exclude floodwater, will not be defined as ‘Functional Floodplain’ and the planning requirements associated with Flood Zone 3b do not apply. The undeveloped land surrounding these buildings are important flow paths and flood storage areas and properties within these areas will be subject to frequent flooding; therefore care must be given to the future sustainability of any development.

7.2.5 The consideration of whether a site is ‘developed’ or ‘undeveloped’ will be considered on a case-by-case basis as part of the planning application process, having regard to the presence of existing buildings on the site and the existing routing of floodwater through the site during times of flood.

7.2.6 Where redevelopment is proposed in developed areas, schemes should not increase the vulnerability classification of the site. All schemes must result in a net reduction in flood risk and ensure that floodplain storage and flow routes are not affected. This can be achieved through a combination of on and off-site measures including:

- Reducing the land use vulnerability;
- Seeking opportunities to ensure there is no increase or achieve a reduction in the number of people at risk (e.g. avoiding conversions and rebuilds of properties that result in an increase in the number of residential dwellings);
- Maintaining or reducing the built footprint
- Raising finished floor levels;
- Reducing surface water runoff rates and volumes from the site;
- Increasing floodplain storage capacity and creating space for flooding to occur by restoring functional floodplain;
- Reducing impedance to floodwater flow and restoring flood flow paths;
- Incorporating flood resilient and/or resistance measures;
- Ensuring development remains safe for users in time of flood (this may refer to the timely evacuation of properties prior to the onset of flooding in accordance with an individual Flood Warning and Evacuation Plan for the site).

7.2.7 Proposals for the change of use or conversion to a use with a higher vulnerability classification will not be permitted. Basements, basements extensions, conversions of basements to a high vulnerability classification or self-contained units will not be permitted.

7.2.8 Where minor development is proposed, schemes should not affect floodplain storage or flow routes through the incorporation of raised finished floor levels, voids and where possible direct or indirect floodplain compensation, flood resilience measures, the removal of other non-floodable structures or replacement of impermeable surfaces with permeable, improved surface water drainage through the implementation of SuDS features such as water butts/rainwater harvesting, living roofs, infiltration trenches/soakaways and below ground attenuation tanks in line with CIRIA guidance on SuDS.

Flood Zone 3a High Probability

7.2.9 Flood Zone 3a High Probability comprises land having a 1% (1 in 100 year) annual probability or greater. Where development is proposed opportunities should be sought to:
- Relocate existing development to land in zones with a lower probability of flooding;
- Reduce the overall level of flood risk in the area through the layout and form of the development, and the appropriate application of sustainable drainage techniques;
- Remain safe for users in times of flood; and
- Create space for flooding to occur by restoring natural floodplain and flood flow paths and by identifying, allocating and safeguarding open space for flood storage.

Flood Zone 2 Medium Probability

7.2.10 Flood Zone 2 Medium Probability comprises land having between a 1% (1 in 100 year) and 0.1% (1 in 1000) annual probability of flooding from fluvial watercourses. Where development is proposed in areas of Flood Zone 2, the planning policy approach is similar to Flood Zone 3a. Opportunities should be sought to:
- Relocate existing development to land in zones with a lower probability of flooding;
• Reduce the overall level of flood risk in the area through the layout and form of the development, and the appropriate application of sustainable drainage techniques;
• Remain safe for users in times of flood; and
• Create space for flooding to occur by restoring natural floodplain and flood flow paths and by identifying, allocating and safeguarding open space for flood storage.

Flood Zone 1 Low Probability

7.2.11 Flood Zone 1 Low Probability comprises land having a less than 0.1% (1 in 1000 year) annual probability of flooding from fluvial watercourses. Where development over 1ha is proposed or there is evidence of flooding from another localised source in areas of Flood Zone 1, opportunities should be sought to:

• Ensure that the management of surface water runoff from the site is considered early in the site planning and design process;
• Ensure safe access and egress and create space for flooding to occur;
• Ensure that proposals achieve an overall reduction in the level of flood risk to the surrounding area, through the appropriate application of sustainable drainage techniques.

Cumulative Impact of Minor and Permitted Development

7.2.12 The PPG advises that minor developments (as defined in Section 6.2) are unlikely to result in significant flood risk issues unless:

• they would have an adverse effect on a watercourse, floodplain or its flood defences;
• they would impede access to flood defence and management facilities; or
• where the cumulative impact of such developments would have a significant impact on local flood storage capacity or flood flows.

7.2.13 In parts of Elmbridge there is potential for both minor development as well as permitted development to be considered to be having a cumulative impact on flood risk in the local area as a result of impacts on local flood storage capacity and flood flows. Given the small scale of the development in the context of the wider fluvial catchments it is not possible to undertake modelling to confirm the impact of such development. This is a particular concern in the areas of Weybridge, Molesey and Thames Ditton where areas of existing development lie within the 5% annual probability (1 in 20 year) flood outline.

7.2.14 It is recommended that Elmbridge BC consider making an Article 4 direction44 to remove national permitted development rights for developed areas of land within Flood Zone 3b where cumulative impact is considered to be a problem e.g. the River Wey floodplain in the Weybridge Settlement Area. The removal of permitted development rights will ensure that a planning application and site-specific FRA will be required for any development in these areas.

7.2.15 FRAs for all minor development within Flood Zone 3 should demonstrate that the proposal is safe and will not increase flood risk elsewhere by not impeding the flow of flood water, reducing storage capacity of the floodplain. Details of flood mitigation measures to reduce the impact of flooding on the proposed development and ensure that the proposed development

44 An article 4 direction is a direction under article 4 of the General Permitted Development Order which enables the Secretary of State or the local planning authority to withdraw specified permitted development rights across a defined area.
does not result in an increase in maximum flood levels within adjoining properties should be provided. This may be achieved by ensuring (for example) that the existing building footprint is not increased, that overland flow routes are not truncated by buildings and/or infrastructure, hydraulically linked compensatory flood storage is provided within the site (or upstream), and/or the incorporation of floodable voids (See paragraph 7.2.8 above). It is acknowledged that full compensation may not be possible on all minor developments, however, an applicant must be able to demonstrate that every effort has been made to achieve this and provide full justification where this is not the case.

Changes of Use

7.2.16 Where a development undergoes a change of use and the vulnerability classification of the development changes, there may be an increase in flood risk. For example, changing from industrial use to residential use will increase the vulnerability classification from Less to More Vulnerable (Table 4-1).

7.2.17 For change of use applications in Flood Zone 2 and 3, applicants must submit a FRA with their application. This should demonstrate how the flood risks to the development will be managed so that it remains safe through its lifetime including provision of safe access and egress and preparation of Flood Warning and Evacuation Plans where necessary.

7.2.18 As changes of use are not subject to the Sequential or Exception tests, Elmbridge BC should consider when formulating policy what changes of use will be acceptable, having regard to paragraph 157 (6th bullet) of the NPPF and taking into account the findings of this SFRA. This is likely to depend on whether developments can be designed to be safe and that there is safe access and egress.

Basement Extensions

7.2.19 Basements extensions may involve either the extension of an existing habitable basement under a house, or the construction of a completely new basement. It is becoming increasingly popular to construct basements which extend beyond the footprint of the host property and under the amenity area.

7.2.20 In accordance with the recommendation for Elmbridge BC to consider the removal of permitted development rights in Flood Zone 3, Elmbridge BC should require that all basement development in Flood Zone 3 seeks planning permission. Applications should be supported by a FRA as well as other reports and evidence formulating a Basement Impact Assessment (BIA). Table 7-1 identifies which management and mitigation measures will need to be addressed as part of a FRA for a basement extension, these are briefly described below.

7.2.21 In accordance with the PPG, self-contained dwellings or bedrooms at basement level in Flood Zone 3 should not be permitted due to the vulnerability of users. Basements, basement extensions, conversions of basements to a higher vulnerability classification or self-contained units are not acceptable in Flood Zone 3b. Basements for other uses in Flood Zone 3a and 2 may be granted provided there is a safe means to escape via internal access to higher floors 300mm above the 1% annual probability (1 in 100 year) flood level including an allowance for climate change.

7.2.22 An FRA must provide details of an appropriate sustainable urban drainage system for the site and investigation to determine whether a perimeter drainage system or other suitable measure is necessary to ensure any existing sub-surface water flow regimes are not interrupted.

7.2.23 Basement development may affect groundwater flows, and even though the displaced water will find a new course around the area of obstruction this may have other consequences for nearby receptors e.g. buildings, trees. Emerging evidence shows that even where there are a number of consecutively constructed basement developments, the groundwater flows will find
a new path. Elmbridge BC may therefore require a Hydrology Report to be submitted with proposals. This report should be prepared by a structural engineering or hydrology firm that is fully accredited by the main professional institute(s) and therefore whose advice we would accept as independent.

7.2.24 The FRA must also address the impact of the proposed extension on the ability of the floodplain to store floodwater during the 1% annual probability (1 in 100 year) event including allowance for climate change and where necessary provide compensatory floodplain storage on a level for level, volume for volume basis.

7.3 Development Management Measures

7.3.1 Table 7-1 sets out the measures that should be considered for different types of propose development within each NPPF Flood Zone. Before consulting Table 7-1, refer to Table 4-1 to determine the vulnerability classification of the proposed development.
Table 7-1 Development Management Measures Summary Table

<table>
<thead>
<tr>
<th>Proposed Development Types</th>
<th>Flood Zone 3b (Undeveloped – Functional Floodplain)</th>
<th>Flood Zone 3a (Developed)</th>
<th>Flood Zone 2</th>
<th>Flood Zone 1</th>
<th>Flood Zone 3b (Developed)</th>
<th>Flood Zone 3a</th>
<th>Flood Zone 2</th>
<th>Flood Zone 1</th>
<th>SFRA section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Zone 3b (Undeveloped – Functional Floodplain)</td>
<td>'Developed land' within Flood Zone 3b relates solely to existing buildings that are impermeable to floodwater. Some minor development proposals may be considered. Change of use to a higher vulnerability classification is not permitted.</td>
<td>Land use should be restricted to Water Compatible or Less Vulnerable development. More Vulnerable development can be considered. Highly Vulnerable development is not appropriate.</td>
<td>Land use should be restricted to Water Compatible, Less Vulnerable or More Vulnerable development. Highly Vulnerable development can be considered.</td>
<td>No restrictions.</td>
<td>'Developed land' within Flood Zone 3b relates solely to existing buildings that are impermeable to floodwater. Some re-development proposals may be considered. Change of use to a higher vulnerability classification is not permitted.</td>
<td>Land use should be restricted to Water Compatible, Less Vulnerable or More Vulnerable development. Highly Vulnerable development can be considered.</td>
<td>No restrictions.</td>
<td>Section 4.2</td>
<td></td>
</tr>
<tr>
<td>Basements</td>
<td>Not permitted.</td>
<td>Basements, basement extensions, conversions of basements to a higher vulnerability classification or self-contained units are not permitted.</td>
<td>Basements, basement extensions and basement conversions may be considered. Regard will be had to whether the site is also affected by groundwater flooding.</td>
<td>No restrictions.</td>
<td>Basements, basement extensions, conversions of basements to a higher vulnerability classification or self-contained units are not permitted.</td>
<td>Self-contained residential basements and bedrooms at basement level are not permitted. All basements, basement extensions and basement conversions may be considered. Regard will be had to whether the site is also affected by groundwater flooding.</td>
<td>No restrictions.</td>
<td>Section 7.2</td>
<td></td>
</tr>
<tr>
<td>Flood Risk Assessment</td>
<td>Yes – for Essential Infrastructure</td>
<td>Yes – key outcomes must be:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• How the development is likely to be affected by current or future flooding from any source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• What measures are proposed to deal with these effects and risks are appropriate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Development does not increase the risk of flooding elsewhere by not impeding the flow of water or reducing storage capacity. It is acknowledged that full compensation may not be possible in all cases, but justification must be given.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Whether the development is safe for its lifetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Required if site > 1 hectare, or there is evidence of a localised flood source.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes – key outcomes must be:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• How the development is likely to be affected by current or future flooding from any source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• What measures are proposed to deal with these effects and risks are appropriate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Development results in an improvement to flood risk by not impeding the flow of water, reducing storage capacity or increasing the number of properties at risk of flooding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Evidence to support the application of the Sequential Test, where appropriate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Whether the development is safe for its lifetime and passes the Exception Test, if applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Required if site > 1 hectare, or there is evidence of a localised flood source.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequential Test</td>
<td>Not required.</td>
<td>Not required.</td>
<td>Not required.</td>
<td>N/A</td>
<td>Yes – if not addressed at the Local Plan level and development type is not included in the list of exemptions</td>
<td>N/A</td>
<td></td>
<td>Section 4.2</td>
<td></td>
</tr>
<tr>
<td>Exception Test</td>
<td>Yes – required for Essential Infrastructure.</td>
<td>Not required.</td>
<td>Not required.</td>
<td>N/A</td>
<td>Yes – required for More Vulnerable development and Essential Infrastructure</td>
<td>Yes – required for Highly Vulnerable development</td>
<td>N/A</td>
<td>Section 4.4</td>
<td></td>
</tr>
<tr>
<td>Sequentials to site planning</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Section 5.2</td>
<td></td>
</tr>
<tr>
<td>Finished Floor Levels</td>
<td>N/A</td>
<td>For More Vulnerable development, floor levels should be set 300mm above modelled 1 in 100 year flood level including an allowance for climate change.</td>
<td>For More Vulnerable development, floor levels should be set 300mm above modelled 1 in 100 year flood level including an allowance for climate change.</td>
<td>No minimum level specified. Floor levels should take account of any localised flood risk from surface water ponding.</td>
<td>No minimum level specified. Floor levels should take account of any localised flood risk from surface water ponding.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sleeping accommodation should be restricted to first floor or above to ensure safe place.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apply sequential approach within the building.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elmbridge Borough Council — Strategic Flood Risk Assessment

All Development

- For More Vulnerable development, floor levels should be set 300mm above modelled 1 in 100 year flood level including an allowance for climate change.
- Floor levels may not need to be raised for new non-residential (Less Vulnerable) development as such development can be designed to be floodable. However, it is strongly recommended that internal access is provided to upper floors (first floor or mezzanine) to provide safe refuge.
- Sleeping accommodation should be restricted to first floor or above to ensure safe place. Apply sequential approach within the building.

Minor development

- For More Vulnerable development, floor levels should be set 300mm above modelled 1 in 100 year flood level including an allowance for climate change.
- Floor levels may not need to be raised for new non-residential (Less Vulnerable) development as such development can be designed to be floodable. However, it is strongly recommended that internal access is provided to upper floors (first floor or mezzanine) to provide safe refuge.
- Sleeping accommodation should be restricted to first floor or above to ensure safe place. Apply sequential approach within the building.

Other development

- For More Vulnerable development, floor levels should be set 300mm above modelled 1 in 100 year flood level including an allowance for climate change.
- Floor levels may not need to be raised for new non-residential (Less Vulnerable) development as such development can be designed to be floodable. However, it is strongly recommended that internal access is provided to upper floors (first floor or mezzanine) to provide safe refuge.
- Sleeping accommodation should be restricted to first floor or above to ensure safe place. Apply sequential approach within the building.
<table>
<thead>
<tr>
<th>All Development</th>
<th>Minor development</th>
<th>Other development</th>
<th>SFRA section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Zone 3b (Undeveloped – Functional Floodplain)</td>
<td>Flood Zone 3b (Developed)</td>
<td>Flood Zone 3a</td>
<td>Flood Zone 2</td>
</tr>
<tr>
<td>Where permitted, basements will require internal access to a floor 300m above 1% (1 in 100 year) annual probability flood event including an allowance for climate change.</td>
<td>Where permitted, basements will require internal access to a floor 300m above 1% (1 in 100 year) annual probability flood event including an allowance for climate change.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flood Zone 3b (Developed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes – typically applied in areas of flood depths <0.3m and between 0.3m and 0.6m where no structure concerns</td>
<td>Yes – typically applied in areas of flood depths <0.3m and between 0.3m and 0.6m where no structure concerns</td>
<td>Yes – with respect to surface water flood risk.</td>
<td></td>
</tr>
<tr>
<td>Flood Zone 3a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes – typically applied in areas of flood depths <0.3m and between 0.3m and 0.6m where no structure concerns</td>
<td>Yes – with respect to surface water flood risk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flood Zone 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes – typically applied in areas of flood depths >0.6m.</td>
<td>Yes – typically applied in areas of flood depths >0.6m.</td>
<td>Yes – typically applied in areas of flood depths >0.6m.</td>
<td>Yes – typically applied in areas of flood depths >0.6m.</td>
</tr>
<tr>
<td>Flood Zone 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In order of preference:</td>
<td>Safe, dry route for people and vehicles</td>
<td>Safe means of escape must be provided in relation to risk of flooding from other sources.</td>
<td></td>
</tr>
<tr>
<td>- Safe, dry route for people and vehicles</td>
<td>Safe means of escape must be provided in relation to risk of flooding from other sources.</td>
<td>Safe means of escape must be provided in relation to risk of flooding from other sources.</td>
<td></td>
</tr>
<tr>
<td>- Safe, dry route for people</td>
<td>Safe means of escape must be provided in relation to risk of flooding from other sources.</td>
<td>Safe means of escape must be provided in relation to risk of flooding from other sources.</td>
<td></td>
</tr>
<tr>
<td>- If a dry route for people is not possible, a route for people where the flood hazard is low</td>
<td>Safe refuge for people</td>
<td>Safe means of escape must be provided in relation to risk of flooding from other sources.</td>
<td></td>
</tr>
<tr>
<td>- If a dry route is not possible, a route for vehicles where the flood hazard is low</td>
<td>'Dry' access/egress is a route located above the 1% (1 in 100 year) annual probability flood event including an allowance for climate change.</td>
<td>Safe means of escape must be provided in relation to risk of flooding from other sources.</td>
<td></td>
</tr>
</tbody>
</table>

Floodplain compensation storage

<table>
<thead>
<tr>
<th>All Development</th>
<th>Minor development</th>
<th>Other development</th>
<th>SFRA section</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Section 5.7</td>
</tr>
</tbody>
</table>

Flow voids

<table>
<thead>
<tr>
<th>All Development</th>
<th>Minor development</th>
<th>Other development</th>
<th>SFRA section</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Section 5.7</td>
</tr>
</tbody>
</table>

Flow routing

<table>
<thead>
<tr>
<th>All Development</th>
<th>Minor development</th>
<th>Other development</th>
<th>SFRA section</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Section 5.8</td>
</tr>
</tbody>
</table>

Safe access/egress

- In order of preference:
 - Safe, dry route for people and vehicles
 - Safe, dry route for people
 - If a dry route for people is not possible, a route for people where the flood hazard is low
 - If a dry route is not possible, a route for vehicles where the flood hazard is low

- ‘Dry’ access/egress is a route located above the 1% (1 in 100 year) annual probability flood event including an allowance for climate change.

Floodplain compensation storage

- Where possible, opportunities should be sought to achieve an increase in the provision of floodplain storage.
- It is recognised that full compensation storage may not always be viable for minor development. In these cases justification must be provided and measures taken to mitigate loss of floodplain storage i.e. through measures to allow the passage of floodwater or provide storage (refer to ‘flood voids’, and ‘flow routing’ below).

Flow voids

- Where it is not possible to provide floodplain compensation storage or full compensation cannot be achieved, flood voids can be used to provide mitigation.
- Flood voids should be appropriately designed and kept clear to enable them to function effectively.

Flow routing

- Minor development and new development should not adversely affect flood routing and thereby increase flood risk elsewhere. Opportunities should be sought within the site design to make space for water, such as:
 - Removing boundary walls or replacing with other boundary treatments such as hedges, fences (with gaps).
 - Considering alternatives to solid wooden gates, or ensuring that there is a gap beneath the gates to allow the passage of floodwater.
 - On uneven or sloping sites, consider lowering ground levels to extend the floodplain without creating ponds. The area of lowered ground must remain connected to the floodplain to allow water to flow back to river when levels recede.
 - Create under-croft car parks or consider reducing ground foot print and creating an open area under the building to allow flood water storage.
 - Where proposals entail floodable garages or outbuildings, consider designing a proportion of the external walls to be committed to free flow of floodwater.
<table>
<thead>
<tr>
<th>All Development</th>
<th>Minor development</th>
<th>Other development</th>
<th>SFRA section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Zone 3b (Undeveloped – Functional Floodplain)</td>
<td>Flood Zone 3b (Developed)</td>
<td>Flood Zone 3a</td>
<td>Flood Zone 2</td>
</tr>
<tr>
<td>Riverside development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes – Retain an 8m wide buffer strip alongside Main Rivers and seek opportunities for riverside restoration. Retain a 5m wide buffer strip alongside Ordinary Watercourses. All new development within 8m of a Main River or Ordinary Watercourse will require consent from the Environment Agency or Surrey County Council (as LLFA) respectively.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface water management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed development should not result in an increase in surface water runoff, and where possible, should demonstrate betterment in terms of rate and volumes of surface water runoff. Proposed development should implement Sustainable Drainage Systems (SuDS) in accordance with the requirements of the ‘Non-statutory technical standards for sustainable drainage systems’, to reduce and manage surface water runoff to and from proposed developments. Requirements within the non-statutory technical standards for Greenfield and previously developed sites are as follows:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previously developed site</td>
<td>Greenfield site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Flow Control Volume</td>
<td>the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.</td>
<td>The peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.</td>
<td></td>
</tr>
<tr>
<td>Volume Control</td>
<td>Where reasonably practicable, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event. Where this is not reasonably practicable, the runoff volume must be discharged at a rate that does not adversely affect flood risk.</td>
<td>Where reasonably practicable, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event should never exceed the greenfield runoff volume for the same event. Where this is not reasonably practicable, the runoff volume must be discharged at a rate that does not adversely affect flood risk.</td>
<td></td>
</tr>
<tr>
<td>Flood Warning and Evacuation Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>Yes - The Environment Agency has a tool on their website to create a Personal Flood Plan. The Plan comprises a checklist of things to do before, during and after a flood and a place to record important contact details. For minor development, it is recommended that the use of this tool to create a Personal Flood Plan will be appropriate.</td>
<td>Yes - Flood Warning and Evacuation Plan (FWEP) required to include details of how flood warnings will be provided, what will be done to protect the development and its contents, and how safe occupancy and access to and from the development will be achieved.</td>
<td></td>
</tr>
<tr>
<td>Planning conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>Conditions to secure the implementation of measures set out in the FRA. Condition to prevent conversion of a non-habitable basement to a habitable space at a later date. Condition to keep voids clear.</td>
<td>Conditions to secure the implementation of measures set out in the FRA. Condition to prevent conversion of a non-habitable basement to a habitable space at a later date. Condition to keep voids clear.</td>
<td>Conditions to secure the implementation of measures set out in the FRA. Condition to prevent conversion of a non-habitable basement to a habitable space at a later date. Condition to keep voids clear.</td>
</tr>
<tr>
<td>Permitted development rights</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Consider the removal of permitted development rights on a case-by-case basis having regard to the remaining amount of development that could be achieved without planning permission and the level of risk.</td>
<td>Remove permitted development rights.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SFRA section</th>
<th>All Development</th>
<th>Minor development</th>
<th>Other development</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Zone 1</td>
<td>Consult the Environment Agency:</td>
<td>If application site > 1 hectare.</td>
<td>Consult the Environment Agency:</td>
<td>N/A</td>
</tr>
<tr>
<td>Flood Zone 2</td>
<td>- If development is within 20m of the top of bank of a Main River, consult Environment Agency on flood defence requirements.</td>
<td>- If application site > 1 hectare.</td>
<td>- Essential infrastructure.</td>
<td>N/A</td>
</tr>
<tr>
<td>Flood Zone 3b (Developed)</td>
<td>Consult the Lead Local Flood Authority:</td>
<td>- If development is within 8m of an Ordinary Watercourse</td>
<td>- Highly vulnerable.</td>
<td>N/A</td>
</tr>
<tr>
<td>Flood Zone 3a</td>
<td>If development is within 8m of an Ordinary Watercourse</td>
<td>- If development is within 8m of an Ordinary Watercourse</td>
<td>- More vulnerable if it's a landfill or waste facility or is a caravan site.</td>
<td>N/A</td>
</tr>
<tr>
<td>Flood Zone 3b (Undeveloped – Functional Floodplain)</td>
<td>Consult the Environment Agency:</td>
<td>- If application site > 1 hectare.</td>
<td>Consult the Environment Agency:</td>
<td>N/A</td>
</tr>
<tr>
<td>Flood Zone 2</td>
<td>- If development (including boundary walls) is within 20m of the top of bank of a Main River, consult Environment Agency on flood defence requirements.</td>
<td>- Change of use where flood risk vulnerability classification has changed to more vulnerable or highly vulnerable or from water compatible to less vulnerable.</td>
<td>- If development (including boundary walls) is within 20m of the top of bank of a Main River, consult Environment Agency on flood defence requirements.</td>
<td>N/A</td>
</tr>
<tr>
<td>Flood Zone 3b (Developed)</td>
<td>Consult the Lead Local Flood Authority:</td>
<td>- If development is within 8m of an Ordinary Watercourse</td>
<td>Consult the Lead Local Flood Authority:</td>
<td>N/A</td>
</tr>
<tr>
<td>Flood Zone 3a</td>
<td>- If development is 'major', consult on 'Surface Water Drainage Statement'.</td>
<td>If development is 'major', consult on 'Surface Water Drainage Statement'.</td>
<td>- If development is 'major', consult on 'Surface Water Drainage Statement'.</td>
<td>N/A</td>
</tr>
<tr>
<td>Flood Zone 2</td>
<td>If development is within 8m of an Ordinary Watercourse</td>
<td>If development is within 8m of an Ordinary Watercourse</td>
<td>If development is within 8m of an Ordinary Watercourse</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Consult the Environment Agency and/or Lead Local Flood Authority.

APPENDIX A DATA REGISTER

<table>
<thead>
<tr>
<th>Dataset Description</th>
<th>Source</th>
<th>Format</th>
<th>Benefits / Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluvial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flood Map for Planning (Rivers and Sea) Flood Zones 2 and 3</td>
<td>Environment Agency Geostore*</td>
<td>GIS Layer</td>
<td>A quick and easy reference that can be used as an indication of the probability of flooding from Main Rivers. The original Flood Map was broad scale national mapping typically using JFLOW modelling software that is generally thought to have inaccuracies. This is regularly updated with the result of new modelling studies. For those rivers where there is no updated modelling (River Rythe), the Flood Zones from JFLOW modelling may not provide an accurate representation of probability of flooding. Typically watercourses with a catchment area less than 3km2 are omitted from Environment Agency mapping unless there is a history of flooding affecting a population. Consequently there will be some locations adjacent to watercourses that on first inspection, suggest there is no flood risk.</td>
</tr>
<tr>
<td>Detailed River Network (DRN)</td>
<td>Environment Agency Geostore</td>
<td>GIS Layer</td>
<td>Identification of the river network including Main Rivers and Ordinary Watercourses for which the Environment Agency and Surrey County Council have discretionary and regulatory powers.</td>
</tr>
<tr>
<td>Historic Flood Map</td>
<td>Environment Agency Geostore</td>
<td>GIS Layer</td>
<td>A single GIS layer showing the extent of fluvial historic flood events created using best available information at time of publication. However, some of the data is based on circumstantial and subjective evidence. There is not always available metadata, e.g. date of flood event.</td>
</tr>
<tr>
<td>Modelled flood outlines for River Wey</td>
<td>Environment Agency</td>
<td>GIS Layer</td>
<td>Detailed and calibrated hydraulic model outlines that have been mapped using LiDAR (1m and 2m resolution). The Environment Agency applies the outcomes from these detailed modelling studies to update the Flood Map for Planning (Rivers and Sea) on a quarterly basis.</td>
</tr>
<tr>
<td>Modelled flood outlines for River Thames</td>
<td>Environment Agency</td>
<td>GIS Layer</td>
<td>Some watercourses have not been modelled (e.g. River Rythe, some of the tributaries of other the Main Rivers). The flood risk from these is based on broad scale JFLOW modelling and therefore the flood risk from these cannot be as accurately assessed.</td>
</tr>
<tr>
<td>Modelled flood outlines for Lower Mole</td>
<td>Environment Agency</td>
<td>GIS Layer</td>
<td></td>
</tr>
<tr>
<td>Modelled flood outlines for Middle Mole</td>
<td>Environment Agency</td>
<td>GIS Layer</td>
<td></td>
</tr>
<tr>
<td>Modelled flood outlines for Dead River</td>
<td>Environment Agency</td>
<td>GIS Layers</td>
<td>Shows where there are existing defences, structures, heights, type and design standard. However many fields contain default values.</td>
</tr>
<tr>
<td>Asset Information Management System (AIMS) for the Borough</td>
<td>Environment Agency</td>
<td>GIS Layer</td>
<td>Historic records of fluvial flooding in the Borough. These incidents are from the years 2000, 2003 and 2014 and provide details of the source and date of occurrence. Properties on 9 roads in the Borough were affected.</td>
</tr>
<tr>
<td>Fluvial Flood Records</td>
<td>Environment Agency</td>
<td>.csv file</td>
<td>Identifies road locations where properties have experienced flooding in the past and are therefore likely to experience flooding in the future without intervention. This data does not identify whether the flooding was internal or external (i.e. flooding of gardens) and the exact source of flooding. However all the locations are in close proximity to Main Rivers and therefore the source is assumed to be fluvial flooding from Main Rivers.</td>
</tr>
<tr>
<td>Historic Flood Records</td>
<td>Elmbridge BC</td>
<td>GIS Layer Excel Sheet Email</td>
<td></td>
</tr>
<tr>
<td>Dataset Description</td>
<td>Source</td>
<td>Format</td>
<td>Benefits / Limitations</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>'Updated Flood Map for Surface Water' dataset</td>
<td>Environment Agency Geostore</td>
<td>GIS Layer</td>
<td>Provides an indication of the broad areas likely to be at risk of surface water flooding, i.e. areas where surface water would be expected to flow or pond. This dataset does not show the susceptibility of individual properties to surface water flooding.</td>
</tr>
<tr>
<td>GIS layer of any highways ditches and other ordinary watercourses</td>
<td>Surrey County Council</td>
<td>GIS Layer</td>
<td>Identifies ditches that are maintained by Surrey County Council in their role as Highways Authority.</td>
</tr>
<tr>
<td>'Wet spots' dataset</td>
<td>Surrey County Council</td>
<td>GIS Layer</td>
<td>The wetspot database is continually updated to produce a comprehensive map and record of all the reported wetspots in Surrey. Information from Surrey risk management authorities informs the database. SCC currently prioritises capital works at wetspots throughout the county based on a number of factors. These factors include safety, internal property flooding, social impact and duration of flooding.</td>
</tr>
<tr>
<td>Map of flooding hotspots</td>
<td>Highways Agency</td>
<td>PDF</td>
<td>Identifies locations on the Highways Agency network that are susceptible to flooding. Not available in a format to overlay onto other datasets. No areas are identified within the Borough.</td>
</tr>
<tr>
<td>Historic and recent records of flooding</td>
<td>Highways Agency</td>
<td>Email</td>
<td>Records of flooding, standing water and ponding on the Highways Agency network from their command and control system.</td>
</tr>
<tr>
<td>GIS layers of the geology across the borough</td>
<td>Elmbridge BC</td>
<td>GIS Layer</td>
<td>Illustrates bedrock and superficial geology across the Borough.</td>
</tr>
<tr>
<td>Groundwater Vulnerability Classifications</td>
<td>Environment Agency Geostore</td>
<td>GIS Layer</td>
<td>Broadly shows extents of aquifers in the Borough. Where aquifers are highly vulnerable, they often have a more permeable covering and, together with dry valley and watercourse networks, potential groundwater flooding areas can be identified. Dataset used in assessment described in Sec 3.5.</td>
</tr>
<tr>
<td>GIS layer of Source Protection Zones</td>
<td>Environment Agency Geostore</td>
<td>GIS Layer</td>
<td>Shows the areas where the groundwater is protected by the Environment Agency. The designation may not consider fractures in the strata at a greater radius where pollutants could reach the source protection zone.</td>
</tr>
<tr>
<td>Aquifer Designation Maps for Bedrock and Superficial</td>
<td>Environment Agency Geostore</td>
<td>GIS Layer</td>
<td>A polygon shapefile that shows aquifer designs for bedrock aquifers. The designations identify the potential of the geological strata to provide water that can be abstracted and have been defined through the assessment of the underlying geology.</td>
</tr>
<tr>
<td>GIS layer of bedrock and superficial geology</td>
<td>British Geological Survey</td>
<td>GIS Layer</td>
<td>A polygon shapefile that shows aquifer designs for superficial aquifers. The designations identify the potential of the geological strata to provide water that can be abstracted and have been defined through the assessment of the underlying geology.</td>
</tr>
<tr>
<td>GIS layer 'Infiltration SuDS Map'</td>
<td>British Geological Survey</td>
<td>GIS Layer</td>
<td>Dataset produced by the BGS of relevance to professionals who make decisions on SuDS design, construction and approval. The maps will help: (1) make preliminary decisions on the suitability of the subsurface for infiltration SuDS; (2) make preliminary decisions on the type of infiltration SuDS that will likely be appropriate; (3) assess SuDS planning applications to determine whether the necessary factors have been considered; and (4) determine whether infiltration SuDS could be appropriate where a non-infiltrating SuDS technique has been proposed.</td>
</tr>
<tr>
<td>GIS layer 'Susceptibility to Groundwater Flooding'</td>
<td>British Geological Survey</td>
<td>GIS Layer</td>
<td>Dataset produced by BGS showing areas susceptible to groundwater flooding on the basis of geological and hydrogeological conditions. Suitable for broad scale assessment.</td>
</tr>
<tr>
<td>Dataset Description</td>
<td>Source</td>
<td>Format</td>
<td>Benefits / Limitations</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Sewer (DG5 Register of sewer flooding incidents, by post code area)</td>
<td>Thames Water</td>
<td>MS Word Doc</td>
<td>Indicates post code areas that may be prone to flooding as have experienced flooding in the last 10 years due to hydraulic incapacity. However, given that TWUL target these areas for maintenance and improvements, areas that experienced flooding in the past may no longer be at greatest risk of flooding. It should be noted that these are flooding incidents that have been reported to TWUL by the home owners. This will not account for any incidents that don’t get reported and therefore do not show on the register. Incidents of sewer flooding can be retrospectively reported to TWUL via their website – http://thameswater.co.uk/help-and-advice/9782.htm.</td>
</tr>
<tr>
<td>Other (LiDAR data (DTM, ASCII))</td>
<td>Environment Agency Geomatics Group</td>
<td>GIS ASCII</td>
<td>Provides a useful basis for understanding local topography and the surface water flood risk in the area. Spatial resolution of 1m. Accuracy of +/- 0.25m. The Environment Agency’s LiDAR data archive contains digital elevation data derived from surveys carried out since 1998.</td>
</tr>
<tr>
<td>Emergency Planning (GIS layer of emergency planning rest centres for the borough)</td>
<td>Elmbridge BC</td>
<td>GIS Layer</td>
<td>Locates the rest centres in the Borough and their level of risk in relation to surface water flooding.</td>
</tr>
<tr>
<td>Flood Warning Areas</td>
<td>Environment Agency Geostore</td>
<td>GIS Layer</td>
<td>Indicates which areas are covered by the flood warning system.</td>
</tr>
<tr>
<td>National Receptor Database (NRD)</td>
<td>Environment Agency Geostore</td>
<td>GIS Layer</td>
<td>Spatial dataset which contains a number of layers categorised into the themes of Buildings, Transport, Utilities, Land Use, Agriculture, Heritage, Environment and Miscellaneous. Each information theme contains a number of relevant data layers.</td>
</tr>
<tr>
<td>Planning (OS Mapping of Elmbridge administrative area (1:10K, 1:50K, OS MasterMap))</td>
<td>OS via Elmbridge BC</td>
<td>GIS Layer</td>
<td>Provides background mapping to other GIS layers. Designed for use at 1:50K and 1:10K scales.</td>
</tr>
<tr>
<td>GIS layer of administrative boundary</td>
<td>Elmbridge BC</td>
<td>GIS Layer</td>
<td>Defines the administrative area of the Borough for mapping purposes.</td>
</tr>
<tr>
<td>GIS layer of post code boundaries</td>
<td>Elmbridge BC</td>
<td>GIS Layer</td>
<td>Delineates post code boundaries for the Borough. Enables mapping of Thames Water datasets which are provided by post code sector.</td>
</tr>
<tr>
<td>GIS layer of 8 Settlement Areas</td>
<td>Elmbridge BC</td>
<td>GIS Layer</td>
<td>Defines the 8 Settlement Areas across the Borough.</td>
</tr>
<tr>
<td>Aerial photography</td>
<td>Elmbridge BC</td>
<td>GIS Raster</td>
<td>Provides useful background information and understanding of the study area. Flown in 2010.</td>
</tr>
<tr>
<td>Greenbelt areas in the Borough</td>
<td>Elmbridge BC</td>
<td>GIS Layer</td>
<td>Delineates areas of greenbelt in the Borough that can aid identification of floodplain areas that should be safeguarded from development.</td>
</tr>
<tr>
<td>Urban areas in the borough</td>
<td>Elmbridge BC</td>
<td>GIS Layer</td>
<td>Delineates urban areas in the Borough to inform Settlement Area schedules.</td>
</tr>
</tbody>
</table>
Historic Flood Records

<table>
<thead>
<tr>
<th>Source Organisation</th>
<th>Road Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elmbridge BC</td>
<td>Identification of 33 road locations where there have been incidents of flooding during the years 1970, 1987, 1988, 1993, 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2003 and 2014. This data does not identify whether the flooding was internal or external (i.e. flooding of gardens) and the exact source of flooding. However all the locations are in close proximity to Main Rivers and therefore the source is assumed to be fluvial flooding from Main Rivers. This dataset is included on Figures C1-C13 (Appendix C) and the road names are listed below: Garricks Ait, Hampton Court Crescent, Hurst Road, Riverbank, Riverside, Molember Road, Feltham Avenue, Beasleys Ait, Felix Lane, Wheatley's Eyot, Albany Reach, Alexandra Road, Aragon Avenue, Queens Road, Riverbank, Thames Ditton Island, Carton Road, Vicarage Fields, Waterside Drive, Dorney Grove, Walton Lane (inc Desborough Island), Church Walk, Glencoe Road, Randor Road, The Willows, Wey Road, Whittets Ait, Brooklands Road, Connaught Drive, Davis Road, Eyton Drive, A246, Dunfee Way, Drake’s Close, Rayleigh Drive, Hare Lane, Littleworth Road, Couchmore Avenue, Portsmouth Road, Riversdale Road.</td>
</tr>
<tr>
<td>Surrey County Council</td>
<td>SCC has provided a GIS layer of ‘wetspots’ throughout the Borough. ‘Wetspot’ is a term used by SCC as the LLFA to describe the location of a surface water flood incident that has been reported. The wetspot database is continually updated to produce a comprehensive map and record of all the identified wetspots in Surrey. Information from Surrey risk management authorities informs the database. SCC currently prioritises capital works at wetspots throughout the county based on a number of factors. These factors include safety, internal property flooding, social impact and duration of flooding. Details of these specific factors have not been supplied for the purposes of the SFRA. This dataset is included on Figures D1-D13 (Appendix D) and the road names are listed below: Oatlands Chase, West End Lane j_w Portsmouth, Stoke road/Woodend, Watts Road/Station Road, Oaken Lane, Rydens Road, Fairbourne, Hersham Road/Station Avenue/Rydens Road, Pantile Road, Station Road, Littleworth Road, Byfleet Road, West End Road, Wey Road, Station Road, Molesey Road, Mill Road, Plough Lane, Bookham Rd Cobham, Hurst Rd (West Molesey), Horsley Rd Cobham, South Road Weybridge, Douglas Rd Esher, Brooklands Road, Temple Market, Fairmile Lane, Sheath Lane, Blundel Lane, Burhill Road, Fairoak, Gordon Road, The Avenue, The Parade, Claremont Road/Forley Road, Matham Road, Walton Road, Walton Road, Hare Lane/Raleigh Drive, Church Road, Stonebanks, Walton Road, Feltham Avenue, North Common, Speer Road, Ashley Road, Woodstock Lane South, Coverts Road, Park Lawn Road, Burwood Road/Pleasant Place, Portsmouth Road (Path South of), Terrace Road, Winterdown Road, Burwood Road, Hansler Grove, Heathside, Lebanon Drive, Sandy Lane, Molesey Road, Balfour Road, Queens Road, Grotto Road, Walton Lane, Princes Road, Cricket Way, Old Heath Road o/s Car Park, St Peters Road, Portmore Park Road, Tartar Road, Oatlands Drive, Mill Rd, Mills Road, Portsmouth Road/Arch Cottages, Portsmouth Road (Sandown Park), Woodlands Lane, Hanger Hill, Littleworth Road (Harelane Green).</td>
</tr>
</tbody>
</table>
APPENDIX B BOROUGH SCALE MAPPING

Figure B1 LiDAR Topographic Survey
Figure B2 BGS Superficial Geology
Figure B3 BGS Bedrock Geology
Figure B4 Watercourses and Surface Water Bodies
Figure B5 BGS Susceptibility to Groundwater Flooding
Figure B6 BGS Infiltration SuDS Suitability Map (Detailed)
Figure B7 Internal Sewer Flooding
Figure B8 External Sewer Flooding
Figure B9 Flood Warning Areas and Rest Centres
APPENDIX C FLUVIAL FLOOD ZONE MAPPING

Figure C1 Fluvial Flood Zones: Weybridge (View 1)
Figure C2 Fluvial Flood Zones: Weybridge (View 2)
Figure C3 Fluvial Flood Zones: Walton-on-Thames (View 1)
Figure C4 Fluvial Flood Zones: Walton-on-Thames (View 2)
Figure C5 Fluvial Flood Zones: Hersham (View 1)
Figure C6 Fluvial Flood Zones: Hersham (View 2)
Figure C7 Fluvial Flood Zones: Cobham, Oxshott, Stoke D’Abernon and Downside (View 1)
Figure C8 Fluvial Flood Zones: Cobham, Oxshott, Stoke D’Abernon and Downside (View 2)
Figure C9 Fluvial Flood Zones: Cobham, Oxshott, Stoke D’Abernon and Downside (View 3)
Figure C10 Fluvial Flood Zones: East and West Molesey
Figure C11 Fluvial Flood Zones: Esher
Figure C12 Fluvial Flood Zones: Thames Ditton, Long Ditton, Hinchley Wood and Weston Green
Figure C13 Fluvial Flood Zones: Claygate
APPENDIX D SURFACE WATER FLOOD RISK MAPPING

Figure D1 Updated Flood Map for Surface Water: Weybridge (View 1)
Figure D2 Updated Flood Map for Surface Water: Weybridge (View 2)
Figure D3 Updated Flood Map for Surface Water: Walton-on-Thames (View 1)
Figure D4 Updated Flood Map for Surface Water: Walton-on-Thames (View 2)
Figure D5 Updated Flood Map for Surface Water: Hersham (View 1)
Figure D6 Updated Flood Map for Surface Water: Hersham (View 2)
Figure D7 Updated Flood Map for Surface Water: Cobham, Oxshott, Stoke D’Abernon, Downside (View 1)
Figure D8 Updated Flood Map for Surface Water: Cobham, Oxshott, Stoke D’Abernon, Downside (View 2)
Figure D9 Updated Flood Map for Surface Water: Cobham, Oxshott, Stoke D’Abernon, Downside (View 3)
Figure D10 Updated Flood Map for Surface Water: East and West Molesey
Figure D11 Updated Flood Map for Surface Water: Esher
Figure D12 Updated Flood Map for Surface Water: Thames Ditton
Figure D13 Updated Flood Map for Surface Water: Claygate
APPENDIX E SETTLEMENT AREA SCHEDULES

A strategic assessment of the flood risk from all sources has been undertaken for each of the eight Settlement Areas in Elmbridge. The findings are presented in the following schedules.

The schedules should be read with reference to the figures in Appendix B, C and D. The schedules have been presented in the following order (as viewed from west to east across the Borough):

- Weybridge (Main Settlement Area),
- Walton-on-Thames (Main Settlement Area),
- Hersham (Suburban Settlement Area),
- Cobham, Oxshott, Stoke D’Abernon and Downside (Service Centre and Rural Fringe),
- East and West Molesey (Suburban Settlement Area),
- Esher (Suburban Settlement Area),
- Thames Ditton, Long Ditton, Hinchley Wood and Weston Green (Suburban Settlement Area), and
- Claygate (Suburban Village).
Weybridge

General Information

Area

Weybridge covers an area of 15.8km2 comprising 52% urban area and 48% Green Belt.

Character

Weybridge is located in the west of Elmbridge, adjoining the boroughs of Runnymede, Spelthorne and Woking. It is the second largest settlement in the Borough with 9,892 dwellings supporting a population of approximately 21,000. The north of the Settlement Area comprises high density residential development, in St George’s Hill in the south; the density of residential dwellings is much lower. Alongside the residential neighbourhoods, the settlement also contains the majority of the Borough’s commercial floor space. Brooklands and Wintersells Road Industrial Parks and ‘The Heights’ business park to the south of the settlement area are strategic areas for employment uses and contain over 267,000 sqm of offices, industrial and warehousing floor space. The businesses in this area provide jobs not only for the residents of Elmbridge but also for those living in adjacent boroughs and beyond. The area also has a large out-of-town retail park, two large hotels and two popular visitor attractions: Mercedes Benz World and Brooklands Museum.

Topography

The western edge of the Settlement Area is low lying land adjacent to the floodplain of the River Wey. The land rises towards the urban area of Weybridge (25-45mAO) and St George’s Hill (75mAO) in the eastern part of the Settlement Area.

Geology

Superficial (Source 1) - the Settlement Area is underlain by superficial deposits – either Lynch Hill Gravel Member (Sand & Gravel (S&G)) or small area of S & G of unknown age (e.g. St Georges Hill). In some areas of Weybridge, no superficial deposits are present.

Bedrock (Source 2) - the Settlement Area is underlain by Bagshot Formation (Sand).

Aquifer Type

The superficial deposits are classified as either a secondary A aquifer or as unproductive strata (Source 3). According to Environment Agency definitions, a secondary aquifer is defined as a permeable layer capable of supporting water supplies a local rather than strategic scale and in some cases forming an important source of base flow to rivers. Unproductive strata are rock strata (see bedrock) or drift deposits with low permeability that has negligible significance for water supply or river base flow.

The underlying bedrock is classified as a secondary A aquifer or unproductive strata. An important factor which influences this classification in Elmbridge is the limited thickness of the layers, in particular the Bagshot Formation in the Weybridge area.

Groundwater Vulnerability Classification and Source Protection Zone

The superficial deposits give the settlement area a minor aquifer high category of risk vulnerability (Source 4).

The Environment Agency defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. There are no SPZs within this settlement area (Source 5).

The Environment Agency records of smaller abstractions have not been reviewed at this stage.

Main Rivers

The River Wey flows north along the western edge of the Settlement Area and through the Brooklands industrial park area. The catchment of the Wey lies within Hampshire and Surrey and has a total area of approx. 904 km2. It falls approximately 190 m in level, and is approximately 104 km in length from its source in Hampshire to the confluence with the Thames near Weybridge. The Lower Wey is navigable from its confluence with the Thames up to Godalming. It includes a number of navigation channels separate from the Main River, with water levels regulated by structures such as locks and weirs. Through the urban area of Weybridge, the natural channels have been engineered and canalised to varying degrees.

After the confluence with the River Wey at Weybridge, the River Thames flows east along the

49 Dwelling stock by Council Tax Band (VOA)
50 Resident Population Estimates 2010 (ONS)
51 Commercial and Industrial Floor space and Rateable Value Statistics Communities and Local Government (2009)
Weybridge

The Desborough Channel, located in the north of the Settlement Area, is an artificial channel that was cut in the 1930s to improve flow and ease navigation along the Thames. The cut takes the river on a straight course between Weybridge and Walton and its construction created Desborough Island.

Ordinary Watercourses

The Engine River flows east parallel to the Desborough Channel and the River Thames in the north of the Settlement Area. Several tributaries of the River Wey flow west from the urban area to their confluence with the River Wey.

Flood Risk

Flood Zones
- Flood Zone 1: 11.8km² (75%)
- Flood Zone 2: 0.9km² (6%)
- Flood Zone 3: 3.1km² (20%)

26% (4km²) of the Settlement Area is within Flood Zones 2 or 3, of which 58% is Green Belt land and 42% in the urban area. The urban areas within the Flood Zones include the western fringe of the Weybridge settlement and the Brooklands and Wintersells Road Industrial Estates.

Functional Floodplain

10% of the Settlement Area (1.6km²) is shown to be at risk during the 5% (1 in 20 year) annual probability flood event. These areas include the developed areas of Wey Road, Wey Meadows, Brooklands Museum and parts of Brooklands Road, as well as the undeveloped areas of Plough Bridge Farm, Brooklands Community Park, Trinity Island, The Bull Dogs, Hamhaugh Island and Desborough Island. These areas are defined by Elmbridge BC as Flood Zone 3b Functional Floodplain, with the exception of developed areas which are prevented from flooding by the presence of existing infrastructure or solid buildings – these areas are not considered Functional Floodplain.

Section 3.10 provides further information.

Climate Change

Land close to Brooklands Industrial Estate is shown to be at risk during the 1% (1 in 100 year) annual probability flood event including an allowance for climate change.

Historic Records

The floodplain of the River Wey is very constrained in this area and Elmbridge BC and the Environment Agency hold records of fluvial flooding adjacent to the River Wey affecting Wey Road, Glencoe Road, Radnor Road and The Willows. Further south, incidents have also been recorded along Connaught Drive, Brooklands Road, Davis Road, Dormey Grove, Walton Lane (Desborough Island), Church Walk and Eyston Drive.

Notable flooding occurrences within the Wey catchment have been reported in 1900, 1947, 1968, 1979, 1985, 1987, 1990, 2000, 2003, 2006, 2007, 2008 and 2013-14. The flooding occurrence in the Lower Wey is influenced by the geology, and the rapid rate of urbanisation within the study area. Floods have been exacerbated by the high runoff generated, coupled with the considerable amount of debris carried into drains and streams, leading to blockages and a reduction in the capacity of the watercourses. This has eventually led to the Wey overflowing its banks, and drains being unable to cope with the excess water leading to widespread flood inundation.

Flood Defences

The Environment Agency AIMS dataset identifies that the River Wey is largely undefended with the exception of concrete flood walls that run alongside the right bank of the River Wey in Byfleet. High ground is present along the edge of the River Wey channel as well as adjacent to the River Thames and Desborough Cut. This part of the River Thames is included in the proposed River Thames Scheme to implement flood risk management measures between Datchet and Teddington as described in Section 3.10, including modifications to the Desborough Channel.

Flooding from Land

The uFMfSW identifies a higher risk of surface water flooding in the natural topographic low points in the Settlement Area. Flow paths follow the natural drainage of the local area, ponding in lower lying areas adjacent to the River Wey and adjacent to embanked railway lines. The data shows that...
Weybridge

Churchfields Recreation Ground may be susceptible to surface water ponding.

Historic Records
SCC have identified the following locations as known ‘wetspots’ which are susceptible to surface water flooding: Oatlands Chase, Oatlands Drive, Pantile Road, Byfleet Road, Wey Road, South Road, Brooklands Road, Temple Market, North Common, Park Lawn Road, Balfour Road, Queens Road, Grotto Road, Walton Lane, Princes Road, Old Heath Road, Portmore Park Road, Hanger Hill.

Flooding from Groundwater
The majority of the Settlement Area is classed as low risk i.e. limited potential for groundwater flooding to occur (Source 6).

The majority of the area is likely to have a groundwater table >5m below the ground surface (Source 7). In the central part of Weybridge, the water tables may be <3m below the surface, but this is overlying permeable Bagshot Formation and hence there is unlikely to be any infiltration impedance.

Figure B5

Flooding from Sewers
The DG5 Register identifies that during the last 10 years internal flooding has affected 1-5 properties in the St George’s Hill area and external flooding has affected 1-5 properties in the western part of the Weybridge urban centre as well as 1-5 properties in the St George’s Hill area.

Figures B7, B8

Reservoirs, canals, other artificial sources
Small waterbodies in the Weybridge Settlement Area include; Broad Water Lake near Templemere, north of Weybridge; Silver Mere set in the grounds of the Silvermere Golf Course; and Warrens Pond, off Warreners Lane near St George’s Hill.

The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ shows that the northern fringe of the Settlement Area could be flooded if the Queen Mary Reservoir to the north of Elmbridge were to fail.

Figure B4

Managing and Mitigating Flood Risk

Flood Warning Areas
The Environment Agency Flood Warning Areas relevant to the Settlement Area are: ‘River Thames at Walton’, ‘River Wey at Weybridge’, ‘River Wey at Wisley and Byfleet’ and ‘Properties closest to the River Wey between Walsham Meadow and Byfleet town’.

Figure B9

Rest Centres
Elmbridge BC has a designated primary rest centre in Weybridge centre, near Churchfields Recreation Ground. Depending on the type and extent of flooding in the local area, this may be available for use as an emergency rest centre. The Multi Agency Flood Plan should be consulted for further information.

Figure B9

Infiltration SuDS Suitability
The majority of the settlement area is likely to be suitable for the application of infiltration SuDS (Sources 8 and 9). In the central Weybridge area, where the water table is <3m below the ground surface, there may be opportunities for bespoke infiltration SuDS.

Figure B6

Site-specific FRA Guidance
Section 5 provides detailed guidance on measures to manage and mitigate flood risk, and Section 6 provides guidance on preparation of site-specific FRAs.

Section 6

Policy Recommendations
Section 7 provides spatial planning and development control recommendations for the Borough.

Section 7
Walton-on-Thames

General Information

Area
Walton-on-Thames covers an area of 10.9km² comprising 47% urban area and 53% Green Belt.

Character
Walton-on-Thames is the largest settlement in Elmbridge with nearly 12,000 dwellings and a population of approximately 24,000. The settlement is in the northwest of the Borough with the River Thames forming the eastern border. It has one of the two bridges crossing the River Thames into the Borough and is a key crossing point for traffic travelling to and from the M3 to the north. Walton town centre is the largest centre in the Borough and one that has grown in recent years, primarily through the development of The Heart, a comprehensive mixed-use town centre scheme. It has also recently benefited from a major environmental improvement scheme - ‘Soul to the Street’. In addition to Walton Town Centre, there are local centres at Walton Halfway, located close to Walton Station and at Terrace Road to the north of Walton Town Centre. The character of the area is predominantly residential. There is a mix of densities including some areas of higher density development as well as pockets of lower density. Open spaces within the urban area are limited. However, greenbelt to the north and west of the settlement and the River Thames on the eastern boundary offer valuable opportunities for informal recreation.

Topography
The Settlement Area is located predominantly within the low-lying floodplain of the River Thames, at approximately 0-12mAOD. Some sites along the Thames frontage have steep banks down to the river. The land rises in the south west corner of the Settlement Area to approximately 26mAOD.

Geology
Superficial (Source 1) - the Settlement Area is underlain by River Terrace Deposits (RTD). The named formations are the Kempton Park Gravel Formation (Sand & Gravel (S&G)) and Taplow Gravel Formation (S&G).
Bedrock (Source 2) - the Settlement Area is underlain by Bagshot Formation (Sand), Claygate Member (London Clay Formation (LCF) – Sand, Silt and Clay) and LCF (Silt and Clay) in different parts of the area.

Aquifer Type
The River Terrace Deposits are classified as a principal aquifer (Source 3). According to EA definitions, a principal aquifer is defined as having intergranular permeability, can provide a high level of water storage, can support water supply and/or river baseflow on a strategic scale. The underlying bedrock is classified as a secondary aquifer. According to EA definitions, a secondary aquifer is defined as a permeable layer capable of supporting water supplies a local rather than strategic scale and in some cases forming an important source of base flow to rivers. An important factor which influences this classification in Elmbridge is the limited thickness of the layers, in particular the Bagshot Formation and Claygate Member.

Groundwater Vulnerability Classification and Source Protection Zone
The River Terrace Deposits covering the surface give the Settlement Area a major aquifer high category of risk vulnerability (Source 4). The EA defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. There are no SPZs within the Settlement Area. The EA records of smaller abstractions have not been reviewed at this stage.

Main Rivers
The River Thames flows along the northern edge of the Settlement Area. The Lower Thames floodplain is relatively broad and flat and the river itself contains several islands. The normal tidal limit of the River Thames occurs at Teddington Weir, approximately 5km downstream from Thames Ditton (TQ 1675 7149), but on a high tide, the tidal influence can extend as far back upriver as Molesey Weir. The Dead River passes around the southern edge of Queen Elizabeth II Storage Reservoir to its confluence with the River Mole. The Dead River drains a catchment of approximately

54 Dwelling stock by Council Tax Band (VOA)
55 Resident Population Estimates 2010 (ONS)
56 www.elmbridge.gov.uk/planning
5km², 50% of which is urbanised. The Lower Mole extends from Esher Railway Bridge downstream along the south eastern edge of the Walton-on-Thames Settlement Area to its confluence with the River Thames at Molesey, near Hampton Court. The catchment covers an area of approximately 11km². The Lower Mole has been extensively modified by the construction of the Lower Mole Flood Alleviation Scheme between 1977 and 1991.

Ordinary Watercourses

An ordinary watercourse flows from Rydens allotments, along Rydens Lane to join the Dead River. There is also a tributary of the Dead River to the rear of Regency Gardens adjacent to the Queen Elizabeth II Storage Reservoir. There is a SCC highways ditch along Hurst Road in the north east of the Settlement Area.

Flood Risk

Flood Zones

The Settlement Area is located within Flood Zones 1, 2, and 3 as follows:
- Flood Zone 1: 8.4km² (77%)
- Flood Zone 2: 1.5km² (14%)
- Flood Zone 3: 1km² (9%)

23% (2.5km²) of the Settlement Area is within Flood Zones 2 or 3, of which 63% is urban area, and 37% is Green Belt (which includes the three water supply reservoirs).

Functional Floodplain

5.8% of the Settlement Area (0.6km²) is shown to be at risk during the 5% (1 in 20 year) annual probability flood event. This comprises the fringe of the Settlement Area along the River Thames frontage, as well as land to the west of Queen Elizabeth II Storage Reservoir near Ambleside Avenue and Regency Gardens. Areas within the 5% annual probability flood outline are defined by Elmbridge BC as Flood Zone 3b Functional Floodplain, with the exception of developed areas which are prevented from flooding by the presence of existing infrastructure or solid buildings – these areas are not considered Functional Floodplain. Section 3.10 provides further information.

Climate Change

The extent of flooding in the area of Walton-on-Thames south west of the Queen Elizabeth II Storage Reservoir is shown to increase during the 1% (1 in 100 year) annual probability flood event including an allowance for climate change.

Historic Records

Elmbridge BC and the Environment Agency hold records of fluvial flooding adjacent to the River Thames affecting Felix Lane, Waterside Drive, Beasley’s Ait Lane and Wheatley’s Eyot.

Flood Defences

The Environment Agency Asset Information Management Systems (AIMS) identifies the presence of high ground adjacent to the Lower Mole, Dead River and River Thames in this location. This section of the River Thames is included in the proposed River Thames Scheme to implement flood risk management measures between Datchet and Teddington as described in Section 3.2.

Flooding from Land

The uFMfSW identifies a higher risk of surface water flooding in the natural topographic low points in the Settlement Area. Areas identified to be at particular risk include Cottimore Lane and Cottimore Avenue and the area around the junction between the A244 and the B256 near Walton Library.

Historic Records

SCC have identified the following locations as known ‘wetspots’ which are susceptible to surface water flooding: Rydens Lane, Hersham Road / Station Ave / Rydens Road, Stonebanks, Ashley Road, Terrace Road.

Flooding from Groundwater

The majority of the Settlement Area is classed as high risk i.e. potential for groundwater flooding to occur at the surface (Source 6). This is because much of the area is covered by Kempton Park Gravel Formation. In this area, the groundwater table is predicted to be <3m below the ground surface based on Source 7. A factor in influencing this risk is that the beneath the River Terrace Deposits lies the London Clay Formation Including Claygate Member).

In those areas with less River Terrace Deposits and underlain by Bagshot Formation, the mapping by
Walton-on-Thames

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flooding from Sewers</td>
<td>During the last 10 years external flooding has affected between 2 and 10 properties in south of the Settlement Area. There are no records of internal sewer flooding</td>
<td>B7, B8</td>
</tr>
<tr>
<td>Reservoirs, canals, other artificial sources</td>
<td>There are 3 large reservoir bodies in the Settlement Area: Bessborough Reservoir, Knight Reservoir (each designated SSSI, SPA, RAMSAR) and Queen Elizabeth II Storage Reservoir. There are also several smaller water bodies including the Molesey Reservoirs Nature Reserve and water bodies associated with disused workings in the east of the Settlement Area with Island Barn Reservoir located just outside to the north east. The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ shows that the northern fringe of the Settlement Area could be flooded if either Knight Reservoir, Queen Elizabeth II Storage Reservoir, Bessborough Reservoir, the Queen Mary Reservoir or Queen Mother Reservoir (both located to the north of Elmbridge), were to fail and release the water they hold.</td>
<td>B4</td>
</tr>
</tbody>
</table>

Managing and Mitigating Flood Risk

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Warning Areas</td>
<td>The Warning Areas relevant to the Walton Settlement Area are: ‘River Mole at Esher and East Molesey’, and ‘River Thames at Walton’.</td>
<td>B9</td>
</tr>
<tr>
<td>Rest Centres</td>
<td>Elmbridge BC has a designated primary rest centre in Walton centre, on Manor Road. Depending on the type and extent of flooding in the local area, this may be available for use as an emergency rest centre. The Multi Agency Flood Plan should be consulted for further information.</td>
<td>B9</td>
</tr>
<tr>
<td>Infiltration SuDS Suitability</td>
<td>In Sources 8 and 9, the majority of the Settlement Area is likely to suffer very significant constraints in the widespread use of infiltration SuDS. This is especially in the areas underlain by the London Clay Formation. Use of attenuation SuDS must be considered in these areas. Infiltration SuDS may be applicable in the areas underlain by Bagshot Formation, although confirmation would be needed in specific locations to determine the depth to the water table. This would be particularly the case for property with below ground surface elements.</td>
<td>B6</td>
</tr>
<tr>
<td>Site-specific FRA Guidance</td>
<td>Section 5 provides detailed guidance on measures to manage and mitigate flood risk, and Section 6 provides guidance on preparation of site-specific FRAs.</td>
<td>Section 6</td>
</tr>
<tr>
<td>Policy Recommendations</td>
<td>Section 7 provides spatial planning and development control recommendations for the Borough.</td>
<td>Section 7</td>
</tr>
</tbody>
</table>
Hersham

General Information

Area

Hersham covers an area of **10.3km²** comprising **37% urban area** and **63% Green Belt**.

Character

Hersham lies in the centre of the Walton, Weybridge and Esher triangle and is primarily a residential area containing 4,027 dwellings\(^{56}\) supporting a population of around 12,500\(^{56}\). The majority of housing is detached or semi-detached (68%) and is at a relatively high density, although the area does include Burwood Park, one of the Borough’s three Special Low Density Areas.

The urban area is bounded by greenbelt to the east with the settlement boundary following the River Mole. Within the greenbelt is Whiteley Village a historic model village that was built in 1907 devoted to the provision of housing for older people of limited means. The majority of buildings here are listed and the village has been designated a Conservation Area.

Topography

The eastern part of the Settlement Area is low lying land, adjacent to the River Mole floodplain. The land rises steeply to the west towards St George’s Hill in the Weybridge Settlement Area, and areas such as Burwood Park and Whiteley Village are located at approximately 30-50m AOD.

Geology

Superficial (Source 1) - The Settlement Area is underlain by River Terrace Deposits. The named formations are the Kempton Park Gravel Formation (Sand & Gravel (S&G)) and Taplow Gravel Formation (S&G).

Bedrock (Source 2) - The Settlement Area is underlain by Claygate Member (upper part of the London Clay Formation – Sand, Silt and Clay).

Aquifer Type

In **Source 3**, the superficial deposits are classified as a principal aquifer. According to EA definitions, a principal aquifer is defined as having intergranular permeability, can provide a high level of water storage, can support water supply and/or river baseflow on a strategic scale.

The underlying bedrock is classified as a secondary A aquifer. According to EA definitions, a secondary aquifer is defined as a permeable layer capable of supporting water supplies a local rather than strategic scale and in some cases forming an important source of base flow to rivers. An important factor which influences this classification in Elmbridge is the limited thickness of the layers, in particular the Claygate Member in the Hersham area.

Groundwater Vulnerability Classification and Source Protection Zone

In **Source 4**, the River Terrace Deposits covering the surface give the Settlement Area a major aquifer high and intermediate category of risk vulnerability.

The EA defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. In **Source 5**, there are no SPZs within this Settlement Area.

Main Rivers

The River Mole forms the eastern boundary of the Settlement Area. The River Mole and its tributaries have a catchment of approximately 487km². The Mole rises in the North Sussex Hills near Rusper and flows into the River Thames at Molesey, near Hampton Court. The Middle Mole extends from where the Salford Stream tributary meets the River Mole in Reigate and Banstead Borough, to the Esher Railway Bridge. The catchment of the Middle Mole covers approximately 270km².

Ordinary Watercourses

A tributary of the Dead River flows from Bell Farm Junior School northwards towards Walton on Thames. Tributaries of the Mole drain eastwards from the Seven Hills Estate and Whiteley Village.

Flood Risk

Flooding from Rivers

Flood Zones

The Settlement Area is located within Flood Zones 1, 2, and 3 as follows:

- Flood Zone 1: 6.8km² (66%)

Source 3, EA; Figures B2, B3

Source 4, EA; Figures B4, C5, C6

Source 5, EA; Figures C5, C6

\(^{56}\) Dwelling stock by Council Tax Band (VOA)

\(^{59}\) Resident Population Estimates 2010 (ONS)
Hersham

- Flood Zone 2: 2.5km² (24%)
- Flood Zone 3: 1.0km² (10%)

The majority of Hersham is located in Flood Zone 1 (66%). 34% (3.5km²) is within Flood Zones 2 or 3, of which 86% is Green Belt land and 14% urban area on the north east edge of Hersham.

Functional Floodplain

6.6% of the Settlement Area (0.7km²) is shown to be at risk during the 5% (1 in 20 year) annual probability flood event. This comprises the rural land adjacent to the River Mole along the eastern boundary of the Hersham Settlement Area. Areas within the 5% (1 in 20 year) annual probability flood outline are defined by Elmbridge BC as Flood Zone 3b Functional Floodplain, with the exception of developed areas which are prevented from flooding by the presence of existing infrastructure or solid buildings – these areas are not considered Functional Floodplain. Section 3.10 provides further information.

Climate Change

The extent of flooding associated with the River Mole is shown to increase slightly during the 1% (1 in 100 year) annual probability flood event including an allowance for climate change, mainly affecting rural land associated with Willow Tree Farm and Southwood Manor Farm, where the course of the River Mole meanders.

Historic Records

There are no records of fluvial flooding held by Elmbridge BC or the Environment Agency.

Flood Defences

The Environment Agency Asset Information Management Systems (AIMS) dataset identifies that as part of the Lower Mole Flood Alleviation Scheme earth embankments and concrete walls are present along the right and left banks of the Lower Mole in the north of the Hersham Settlement Area. The area between Esher Road and the Mole channel is formally identified as an area benefitting from flood defences on the Flood Map for Planning (Rivers and Sea).

Flooding from Land

The uFMfSW identifies a higher risk of surface water flooding in the natural topographic low points in the Settlement Area and where particular barriers present an obstruction behind which surface water can collect. The mapping identifies the potential for garden and highway flooding in the north of the Settlement Area and parts of Burwood Park. Ponding is also modelled to occur adjacent to ordinary watercourses in the south of the Settlement Area.

Historic Records

SCC have identified the following locations as known ‘wetspots’ which are susceptible to surface water flooding: Molesey Road, Burhill Road, Burwood Road and Mills Road.

Flooding from Groundwater

In Source 6, the majority of the Settlement Area is classed as high risk in the eastern area and low risk in the western and southern areas. The high risk area has the potential for groundwater flooding to occur at the surface. This is because much of the area is covered by Kempton Park Gravel Formation and Taplow Gravel Formation. In this area and based on Source 7, the groundwater table is predicted to be <3m below the ground surface. A factor in influencing this risk is that the beneath the River Terrace Deposits lies the London Clay Formation Including Clay Member).

Figure B5

Flooding from Sewers

No records of internal or external property flooding in the Hersham Settlement Area for the past 10 years.

Figures B7, B8

Reservoirs, canals, other artificial sources

There are two small lakes within the Settlement Area, The Lake, and Broad Water in Burwood Park. The water supply reservoirs including Queen Elizabeth II Reservoir, Island Barn Reservoir, Bessborough Reservoir and Knight Reservoir are located to the north of the Settlement Area. The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ shows the area that could be flooded if one of these reservoirs were to fail and release the water it holds. The extent of flooding is shown not to extend as far as the Hersham Settlement Area.

Figure B4

Managing and Mitigating Flood Risk

Flood Warning Areas

The Warning Area relevant to the Settlement Area is: ‘River Mole at Esher and East Molesey’, ‘River Mole at Stoke D’Abernon, Cobham and South Hersham’.

Figure B9
Hersham

Rest Centres	Elmbridge BC has a designated primary rest centre in Hersham Centre, on Queen’s Road. Depending on the type and extent of flooding in the local area, this may be available for use as an emergency rest centre. The Multi Agency Flood Plan should be consulted for further information.	Figure B9
Infiltration SuDS Suitability	In *Sources 8 and 9*, the eastern part of the Settlement Area is likely to suffer very significant constraints in the use of infiltration SuDS. This is especially in the areas underlain by the London Clay Formation. The western part of the Settlement Area, where the water table is <3m below the ground surface, there may be opportunities for bespoke infiltration SuDS. In the southern part of Settlement Area, these areas are generally highly compatible for infiltration SuDS.	Figure B6
Site-specific FRA Guidance	Section 5 provides detailed guidance on measures to manage and mitigate flood risk, and Section 6 provides guidance on preparation of site-specific FRAs. Modelling for the Lower Mole does not include all the Ordinary Watercourse tributaries in the catchment. For development sites in close proximity to Ordinary Watercourses it is likely that modelling will be required in order to determine the probability of flooding and local flood levels to inform the site-specific FRA.	Section 6
Policy Recommendations	Section 7 provides spatial planning and development control recommendations for the Borough.	Section 7
Cobham, Oxshott, Stoke D’Abernon and Downside

General Information

<table>
<thead>
<tr>
<th>Area</th>
<th>Cobham, Oxshott, Stoke D’Abernon and Downside cover a large area of 30.6km² comprising 27% urban area and 73% Green Belt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character</td>
<td>Cobham, Oxshott, Stoke D’Abernon and Downside are located in the south of the Borough and are separated from the rest of Elmbridge by the A3 as well as by extensive areas of greenbelt. This acts as an important recreational resource with locations such as Oxshott Heath, Fairmile Park and Cobham Park being popular with both residents and visitors alike. Cobham, Oxshott, Stoke D’Abernon and Downside Village are four distinctly different areas. Whilst recognising that they share a variety of common characteristics, their individuality is of primary importance to the local community. The vast majority of development in the area is residential. The area contains 7,245 households supporting a population of nearly 19,000.</td>
</tr>
</tbody>
</table>

Topography

| Fairmile and Oxshott located in the eastern part of the Settlement Area are located on high land, at approximately 45-75mAOD. The land falls away to the west towards Stoke D’Abernon (40mAOD) and Cobham (20mAOD) towards the floodplain of the River Mole (15-20mAOD). The land rises again towards Downside and Pointer’s Green (30mAOD) where the M25 passes through the Settlement Area and Hatchford (50mAOD). |

Geology

| Superficial (Source 1) - The Settlement Area is underlain by superficial deposits – either Taplow Gravel Formation (Sand & Gravel) or alluvium. | Figures B2, B3 |

| Bedrock (Source 2) - The Settlement Area is underlain by Bagshot Formation (Sand) and Claygate Member (London Clay Formation – Sand, Silt and Clay). |

Aquifer

| In Source 3, the superficial deposits are classified as either a principal aquifer or secondary A aquifer. According to EA definitions, a principal aquifer is defined as having intergranular permeability, can provide a high level of water storage, can support water supply and/ or river baseflow on a strategic scale. A secondary A aquifer is defined as a permeable layer capable of supporting water supplies a local rather than strategic scale and in some cases forming an important source of base flow to rivers. The underlying bedrock is classified as a secondary A aquifer. An important factor which influences this classification in Elmbridge is the limited thickness of the layers, in particular the Bagshot Formation and Claygate Member. |

Groundwater Vulnerability Classification and Source Protection Zone

| In Source 4, the superficial deposits give the Settlement Area a range of risk vulnerabilities from major aquifer high and intermediate Taplow Gravel Formation) to minor aquifer high and intermediate (alluvium). The EA defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. | Figures B4; C7, C8, C9 |

| In Source 5, there are no SPZs within this Settlement Area. The EA records of smaller abstractions have not been reviewed at this stage. |

Main Rivers

| The River Mole and its tributaries have a catchment of approximately 487km². The Mole rises in the North Sussex Hills near Rusper and flows into the River Thames at Molesey, near Hampton Court. The Middle Mole extends from where the Salford Stream tributary meets the River Mole in the Reigate and Banstead District, to the Esher Railway Bridge. The catchment of the Middle Mole covers approximately 270km². The Middle Mole enters the Settlement Area close to Stoke D’Abernon bridge, where it passes beneath the M25. The Middle Mole then meanders through the Settlement Area towards Hersham. |

Ordinary Watercourses

| There are numerous ordinary watercourses in the Settlement Area that drain into the Rythe or Mole. Several large tributaries join the River Mole in this Settlement Area, draining the areas of Fairmile |

61 Dwelling stock by Council Tax Band (VOA)

62 Resident Population Estimates 2010 (ONS)
The Settlement Area is located within Flood Zones 1, 2, and 3 as follows:

- Flood Zone 1: 20.4km² (67%)
- Flood Zone 2: 6.2km² (20%)
- Flood Zone 3: 4km² (13%)

33% (10.2km²) of the Settlement Area is within Flood Zones 2 or 3, of which 82% is Green Belt land and 18% in the urban area associated with Oxshott, Stoke D’Abernon and Cobham.

Functional Floodplain

10% of the Settlement Area (3.1km²) is shown to be at risk during the 5% (1 in 20 year) annual probability flood event. This comprises the rural land within the relatively wide floodplain of the Middle Mole. Areas within the 5% (1 in 20 year) annual probability flood outline are defined by Elmbridge BC as Flood Zone 3b Functional Floodplain, (with the exception of areas which are prevented from flooding by the presence of existing infrastructure or solid buildings – these areas are not considered Functional Floodplain). Section 3.10 provides further information.

Climate Change

The extent of flooding associated with the Middle Mole is shown to marginally increase during the 1% (1 in 100 year) annual probability flood event including an allowance for climate change.

Historic Records

No records of fluvial flooding were provided by the Environment Agency for this Settlement Area during the preparation of this SFRA. However, anecdotal information from Elmbridge BC confirms that frequent flooding is experienced in parts of Cobham including the high street when the River Mole responds to heavy rainfall events.

Flood Defences

The Middle Mole is not formally defended. The Environment Agency Asset Information Management Systems (AIMS) dataset identifies high ground on either side of the watercourse. Some of the tributaries of the River Mole near Stoke D’Abernon are culverted for short sections.

Flooding from Land

The uFMfSW identifies a higher risk of surface water flooding in the natural topographic low points in the Settlement Area and where particular barriers present an obstruction behind which surface water can collect. The mapping identifies surface water flood risk in the low-lying land adjacent to the River Mole. The mapping also identifies the potential for surface water to pond on the following highways between Cobham and Oxshott; Leigh Hill Road, Tartar Hill, Icklingham Road and Mizen Way.

Historic Records

SCC have identified the following locations as known ‘wetspots’ which are susceptible to surface water flooding: Stoke Road, Fairbourne, Mill Road, Plough Lane, Bookham Road, Horsley Road, Fairmile Lane, Blundel Lane, Lebanon Drive, Sandy Lane, Tartar Road, Sheath Lane, Fairoak Lane, Woodlands Lane.

Flooding from Groundwater

In Source 6, the main built-up area around Cobham itself is classed as low risk i.e. limited potential for groundwater flooding to occur. In Source 7, this area coincides with the Bagshot Formation outcrop area and where the water table is >5m below the ground surface.

There is high risk area (potential for groundwater flooding to occur at the surface) and which is associated with superficial deposits – Taplow Gravel Formation and alluvium, along the River Mole floodplain. In this area and based on Source 7, the water table is likely to be <3m below the ground surface, hence the higher risk than in other parts of Settlement Area.

Flooding from Sewers

During the last 10 years 1-5 properties have been affected by external flooding in the eastern part of Cobham and Fairmile. There are no records of properties affected by internal flooding across the Settlement Area.

Reservoirs

There are no known significant water bodies within the Settlement Area. The water supply reservoirs

Cobham, Oxshott, Stoke D’Abernon and Downside

and Oxshott in the east and Hatchford and May's Green in the southwest. There are also a number of SCC highways ditches in the Settlement Area.

Figures

- Figures C7, C8, C9
- Figures D7, D8, D9
- Figure B5
- Figures B7, B8
- Figure B4

Flood Zones

The Settlement Area is located within Flood Zones 1, 2, and 3 as follows:

- Flood Zone 1: 20.4km² (67%)
- Flood Zone 2: 6.2km² (20%)
- Flood Zone 3: 4km² (13%)

33% (10.2km²) of the Settlement Area is within Flood Zones 2 or 3, of which 82% is Green Belt land and 18% in the urban area associated with Oxshott, Stoke D’Abernon and Cobham.

Functional Floodplain

10% of the Settlement Area (3.1km²) is shown to be at risk during the 5% (1 in 20 year) annual probability flood event. This comprises the rural land within the relatively wide floodplain of the Middle Mole. Areas within the 5% (1 in 20 year) annual probability flood outline are defined by Elmbridge BC as Flood Zone 3b Functional Floodplain, (with the exception of areas which are prevented from flooding by the presence of existing infrastructure or solid buildings – these areas are not considered Functional Floodplain). Section 3.10 provides further information.

Climate Change

The extent of flooding associated with the Middle Mole is shown to marginally increase during the 1% (1 in 100 year) annual probability flood event including an allowance for climate change.

Historic Records

No records of fluvial flooding were provided by the Environment Agency for this Settlement Area during the preparation of this SFRA. However, anecdotal information from Elmbridge BC confirms that frequent flooding is experienced in parts of Cobham including the high street when the River Mole responds to heavy rainfall events.

Flood Defences

The Middle Mole is not formally defended. The Environment Agency Asset Information Management Systems (AIMS) dataset identifies high ground on either side of the watercourse. Some of the tributaries of the River Mole near Stoke D’Abernon are culverted for short sections.

Flooding from Land

The uFMfSW identifies a higher risk of surface water flooding in the natural topographic low points in the Settlement Area and where particular barriers present an obstruction behind which surface water can collect. The mapping identifies surface water flood risk in the low-lying land adjacent to the River Mole. The mapping also identifies the potential for surface water to pond on the following highways between Cobham and Oxshott; Leigh Hill Road, Tartar Hill, Icklingham Road and Mizen Way.

Historic Records

SCC have identified the following locations as known ‘wetspots’ which are susceptible to surface water flooding: Stoke Road, Fairbourne, Mill Road, Plough Lane, Bookham Road, Horsley Road, Fairmile Lane, Blundel Lane, Lebanon Drive, Sandy Lane, Tartar Road, Sheath Lane, Fairoak Lane, Woodlands Lane.

Flooding from Groundwater

In Source 6, the main built-up area around Cobham itself is classed as low risk i.e. limited potential for groundwater flooding to occur. In Source 7, this area coincides with the Bagshot Formation outcrop area and where the water table is >5m below the ground surface.

There is high risk area (potential for groundwater flooding to occur at the surface) and which is associated with superficial deposits – Taplow Gravel Formation and alluvium, along the River Mole floodplain. In this area and based on Source 7, the water table is likely to be <3m below the ground surface, hence the higher risk than in other parts of Settlement Area.

Flooding from Sewers

During the last 10 years 1-5 properties have been affected by external flooding in the eastern part of Cobham and Fairmile. There are no records of properties affected by internal flooding across the Settlement Area.

Reservoirs

There are no known significant water bodies within the Settlement Area. The water supply reservoirs
Cobham, Oxshott, Stoke D’Abernon and Downside

| canals, other artificial sources | including Queen Elizabeth II Reservoir, Island Barn Reservoir, Bessborough Reservoir and Knight Reservoir are located to the north of the Settlement Area. The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ which shows the area that could be flooded if one of these reservoirs were to fail and release the water it holds shows that the extent of flooding would not extend as far as the Cobham Settlement Area. There are 4 small waterbodies present within the Settlement Area including one to the south of the M25 in Effingham Common. In the event of this waterbody releasing the water it holds, the mapping shows that water would follow the course of the Mole and cause flooding of the Mole floodplain. |

Managing and Mitigating Flood Risk

<table>
<thead>
<tr>
<th>Flood Warning Areas</th>
<th>The Flood Warning Area of relevance to this area is: ‘River Mole at Stoke D’Abernon, Cobham and South Hersham’.</th>
<th>Figure B9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest Centres</td>
<td>Elmbridge BC has a designated primary rest centre in Cobham Centre, on Oakdene Road. Depending on the type and extent of flooding in the local area, this may be available for use as an emergency rest centre. The Multi Agency Flood Plan should be consulted for further information.</td>
<td>Figure B9</td>
</tr>
<tr>
<td>Infiltration SuDS Suitability</td>
<td>In Sources 8 and 9, the area around the River Mole floodplain is likely to suffer very significant constraints in the use of infiltration SuDS. The main built-up area around Cobham is likely to be high compatible for infiltration SuDS as it is underlain by permeable Bagshot Formation. In the rest of Settlement Area, there may be opportunities for bespoke infiltration SuDS. Although confirmation would be needed in specific locations to determine the depth to the water table.</td>
<td>Figure B6</td>
</tr>
<tr>
<td>Site-specific FRA Guidance</td>
<td>Section 5 provides detailed guidance on measures to manage and mitigate flood risk, and Section 6 provides guidance on preparation of site-specific FRAs. Modelling and flood zone mapping for the Lower Mole does not include all the ordinary watercourse tributaries in the catchment. For development sites in close proximity to these watercourses it is likely that modelling will be required in order to determine the probability of flooding and specific flood levels to inform a site-specific FRA.</td>
<td>Section 6</td>
</tr>
<tr>
<td>Policy Recommendations</td>
<td>Section 7 provides spatial planning and development control recommendations for the Borough. Of particular relevance to this Settlement Area are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>
General Information

<table>
<thead>
<tr>
<th>Area</th>
<th>East and West Molesey covers an area of 5.9km² comprising 76% urban area and 24% Green Belt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character</td>
<td>The Settlement Area of East and West Molesey is in the northeast of the Borough bordering the London Boroughs of Richmond and Kingston, which lie on the opposite side of the River Thames. Its role within the settlement hierarchy is as a suburban Settlement Area, and whilst it is primarily residential in character there are two substantial areas currently designated as Strategic Employment Land – Molesey Industrial Estate and Imber Court Trading Estate both of which support a range of light industrial, storage, distribution and service industries. The general character of the residential area is varied, ranging from predominantly Victorian houses in the east to 1960s housing in the west. In total there are 5355 dwellings and a population approaching 13,000. A particular feature of the area is the amount of social housing and ex-local authority owned properties in West Molesey.</td>
</tr>
<tr>
<td>Topography</td>
<td>The Settlement Area is largely flat, located adjacent to the River Thames at approximately 5-10m AOD.</td>
</tr>
<tr>
<td>Geology</td>
<td>Superficial (Source 1) - The Settlement Area is underlain by superficial deposits – either Kempton Park Gravel Formation (Sand & Gravel (S&G)) or alluvium. Bedrock (Source 2) - The Settlement Area is underlain by London Clay Formation (Silt and Clay).</td>
</tr>
<tr>
<td>Aquifer Type</td>
<td>In Source 3, the superficial deposits are classified as a principal aquifer. According to EA definitions, a principal aquifer is defined as having intergranular permeability, can provide a high level of water storage, can support water supply and/or river base flow on a strategic scale. The underlying bedrock is classified as unproductive strata. According to EA definitions, unproductive strata are rock strata or drift deposits with low permeability that has negligible significance for water supply or river base flow.</td>
</tr>
<tr>
<td>Groundwater Vulnerability Classification and Source Protection Zone</td>
<td>In Source 4, the superficial deposits give the Settlement Area a major aquifer high category of risk vulnerability. The EA defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. In Source 5, there are no SPZs within this Settlement Area. The EA records of smaller abstractions have not been reviewed at this stage.</td>
</tr>
<tr>
<td>Main Rivers</td>
<td>The River Thames flows along the northern edge of the Settlement Area. The Lower Thames floodplain is relatively broad and flat and the river itself contains several islands. The normal tidal limit of the River Thames occurs at Teddington Weir, approximately 5km downstream from Thames Ditton (TO 1675 7149), but on a high tide, the tidal influence can extend as far back upriver as Molesey Weir. The Dead River flows eastwards south of the Molesey Industrial Estate to join the River Mole in the west. The Dead River is the only significant tributary of the Lower Mole. The Dead River drains a catchment of approximately 5km², 50% of which is urbanised. The Lower Mole extends from Esher Railway Bridge downstream, round the western side of Island Barn Reservoir, to its confluence with the River Thames at Molesey. The River Ember is a channel of the River Mole which flows around the east of Island Barn Reservoir before flowing northeast, parallel to the Lower Mole channel towards their confluence with the Thames. The Lower Mole catchment covers an area of approximately 11km² and has been extensively modified by the construction of the Lower Mole Flood Alleviation Scheme between 1977 and 1991.</td>
</tr>
<tr>
<td>Ordinary Watercourses</td>
<td>There is an ordinary watercourse adjacent to the River Ember channel and Island Barn Reservoir.</td>
</tr>
</tbody>
</table>

64 Dwelling stock by Council Tax Band (VOA)
65 Resident Population Estimates 2010 (ONS)
East and West Molesey

Flood Risk

<table>
<thead>
<tr>
<th>Flood Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Settlement Area is located within Flood Zones 1, 2, and 3 as follows:</td>
</tr>
<tr>
<td>- Flood Zone 1: 2.7km² (46%)</td>
</tr>
<tr>
<td>- Flood Zone 2: 3.2km² (39%)</td>
</tr>
<tr>
<td>- Flood Zone 3: 0.9km² (15%)</td>
</tr>
<tr>
<td>54% (3.2km²) of the Settlement Area is within Flood Zones 2 or 3, of which 27% is Green Belt land and 73% in the urban area.</td>
</tr>
</tbody>
</table>

Functional Floodplain

7.5% of the Settlement Area (0.4km²) is shown to be at risk during the 5% (1 in 20 year) annual probability flood event. These areas include the developed areas of Garrick’s Eyot as well as the undeveloped areas of Hurst Park and the cricket ground. Areas within the 5% (1 in 20 year) annual probability flood outline are defined by Elmbridge BC as Flood Zone 3b Functional Floodplain, with the exception of developed areas which are prevented from flooding by the presence of existing infrastructure or solid buildings – these areas are not considered Functional Floodplain. Section 3.10 provides further information.

Climate Change

The extent of flooding associated with the River Thames around Hurst Park is shown to increase during the 1% (1 in 100 year) annual probability flood event including an allowance for climate change. The extent of flooding associated with the Lower Mole and Ember channels is also shown to increase, affecting Palace Road, Creek Road and Bridge Road to the north of the watercourses, and the Old Tiffanies Sports Ground and Esher Road to the south.

Historic Records

Elmbridge BC hold records of fluvial flooding associated with the River Thames at Molember Road, Riverbank, Feltham Avenue, Hampton Court Crescent and Garrick’s Eyot.

Flood Defences

The Environment Agency Asset Information Management Systems (AIMS) dataset identifies the presence of high ground along the River Thames in this location. This part of the River Thames is included in the proposed River Thames Scheme to implement flood risk management measures between Datchet and Teddington as described in Section 3.2.

The Lower Mole has been modified by the construction of the Lower Mole Flood Alleviation Scheme between 1977 and 1991 which comprises embankments along the reach of the Lower Mole adjacent to Island Barn Reservoir and a 0.6km length of flood defence wall further downstream.

Flooding from Rivers

The Settlement Area is flat and low lying. The uFMISW identifies small pockets of surface water flood risk along highways in natural topographic low points of adjacent to buildings and higher ground. Surface water is also shown to pond adjacent to the Thames and Mole watercourses.

Historic Records

SCC have identified the following locations as known ‘wetspots’ which are susceptible to surface water flooding: Hurst Road, Matham Road, Walton Road, Feltham Avenue, Hansler Grove, and St Peters Road.

Flooding from Groundwater

In Source 6, the majority of the Settlement Area is classed as high risk i.e. potential for groundwater flooding to occur at the surface. Some areas close by the River Thames are classed as medium risk i.e. potential for groundwater flooding of property situated below ground surface. This is because much of the area is covered by Kempton Park Gravel Formation. In the high risk areas and based on Source 7, the groundwater table is predicted to be <3m below the ground surface and the medium risk areas to be 3-5m below the ground surface. A factor in influencing this risk is that the beneath the River Thames Deposits lies the London Clay Formation.

Flooding

During the last 10 years external flooding has affected 1-5 properties in the south of the Settlement Area and 1-5 in the north east. In this same locations 21-30 properties have also been affected by...
East and West Molesey

<table>
<thead>
<tr>
<th>from Sewers</th>
<th>internal sewer flooding.</th>
<th>B7, B8</th>
</tr>
</thead>
</table>

| Reservoirs, canals, other artificial sources | The Island Barn water supply reservoir is located in the south of the Settlement Area. The reservoir has an area of 0.5km2 and is managed by TWUL. Bessborough, Knight and Queen Elizabeth II Reservoirs are also located close to the Settlement Area. The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ shows that the whole of the East and West Molesey Settlement Area could be flooded if these reservoirs were to fail and release the water they hold. The Molesey Reservoirs Nature Reserve is also located in the north of the Settlement Area adjacent to the River Thames and comprises two former gravel pits. | Figure B4 |

Managing and Mitigating Flood Risk

<table>
<thead>
<tr>
<th>Flood Warning Areas</th>
<th>The Warning Areas relevant to the Settlement Area are: ‘River Thames at East and West Molesey’ and ‘River Mole at Esher and East Molesey’.</th>
<th>Figure B9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest Centres</td>
<td>Elmbridge BC has a designated primary rest centre in Molesey centre, on Bishops Fox Way. Depending on the type and extent of flooding in the local area, this may be available for use as an emergency rest centre. The Multi Agency Flood Plan should be consulted for further information.</td>
<td>Figure B9</td>
</tr>
<tr>
<td>Infiltration SuDS Suitability</td>
<td>In Sources 8 and 9, the majority of the Settlement Area is likely to suffer very significant constraints in the widespread use of infiltration SuDS. This is especially in the areas where the water table is <3m below the ground surface. In the areas where the water table is 3-5m below the ground surface, there may be opportunities for bespoke infiltration SuDS. Local confirmation would be required of depth to the water table before design is considered.</td>
<td>Figure B6</td>
</tr>
<tr>
<td>Site-specific FRA Guidance</td>
<td>Section 5 provides detailed guidance on measures to manage and mitigate flood risk, and Section 6 provides guidance on preparation of site-specific FRAs.</td>
<td>Section 6</td>
</tr>
<tr>
<td>Policy Recommendations</td>
<td>Section 7 provides spatial planning and development control recommendations for the Borough.</td>
<td>Section 7</td>
</tr>
</tbody>
</table>
Esher

General Information

Area

Esher covers an area of 9.3km\(^2\) comprising 32\% urban area and 68\% Green Belt.

Character\(^{66}\)

Esher is located in the centre of the Borough and is one of the smaller settlements, containing nearly 2,900 dwellings\(^{67}\) and having a population of just over 6,500\(^{68}\). The town is surrounded by open space with the south of the settlement area containing Esher Commons, the largest of the Borough’s three Sites of Special Scientific Interest (SSSI) and Claremont Landscape Gardens. To the north is the internationally renowned Sandown Park Racecourse. These local assets, alongside the relatively low density of the existing development, interspersed with the village greens at Esher, Hare Lane and West End, all contribute to the character and high quality environment of this area.

Topography

The central and eastern part of the Settlement Area, including the urban centre of Esher, Claremont Park and Esher Common are located on high land (35-50m AOD). The land falls away to the west towards the River Mole floodplain where levels are approximately 10-15m AOD.

Geology

Superficial (Source 1) - The Settlement Area is underlain by superficial deposits – either small area of Black Park Gravel Member (Sand & Gravel) or no deposits.

Bedrock (Source 2) - The Settlement Area is underlain by Bagshot Formation (Sand) and Claygate Member (upper part of London Clay Formation – Sand, Silt and Clay).

Aquifer Type

In Source 3, the superficial deposits are classified as unproductive strata. According to EA definitions, unproductive strata are rock strata (see bedrock) or drift deposits with low permeability that has negligible significance for water supply or river base flow.

The underlying bedrock is classified as a secondary aquifer or unproductive strata. According to EA definitions, a secondary aquifer is defined as a permeable layer capable of supporting water supplies a local rather than strategic scale and in some cases forming an important source of base flow to rivers. An important factor which influences this classification in Elmbridge is the limited thickness of the layers, in particular the Bagshot Formation and Claygate Member.

Groundwater Vulnerability Classification and Source Protection Zone

In Source 4, the superficial deposits give the Settlement Area a minor aquifer high and intermediate category of risk vulnerability.

The EA defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. In Source 5, there are no SPZs within this Settlement Area.

Main Rivers

The River Mole flows northwards along the western edge of the Esher Settlement Area. The Middle Mole extends from where the Salford Stream tributary meets the River Mole, just upstream of Sidlow Bridge in the Reigate and Banstead District, to the Esher Railway Bridge and its catchment covers approximately 270km\(^2\). The Lower Mole extends from Esher Railway Bridge downstream to its confluence with the River Thames at Molessey, near Hampton Court. The catchment covers an area of approximately 11km\(^2\). The Lower Mole has been extensively modified by the construction of the Lower Mole Flood Alleviation Scheme between 1977 and 1991. The Dead River is the main tributary of the Lower Mole. The Rythe flows northwards through Abrook Common and the eastern part of the Settlement Area. This watercourse rises near Oxshott, in the Prince’s Coverts woodland and flows northwards, through Claygate and along the edge of Hinchley Wood. The river then follows the Portsmouth Road towards Thames Ditton, and runs into the River Thames near Ferry Road, forming the boundary between Kingston and Thames Ditton.

Ordinary Watercourses

Tributaries of the Mole drain areas such as Esher Common, West End Common and the River Mole Business Park/Sandown Industrial Estates in the north of the Settlement Area. Tributaries of the Rythe drain the eastern part of Esher Common and Claremont Park.

\(^{65}\) Extracted from the Consultation Settlement ID Plans http://consult.elmbridge.gov.uk/consult.ti/Draft_ID_Plans/consultationHome

\(^{67}\) Dwelling Stock by Council Tax Band (VOA)

\(^{68}\) Resident Population Estimates 2010 (ONS)
Esher

Flood Risk

| Flooding from Rivers |
|----------------------|---|
| **Flood Zones** |
| The Settlement Area is located within Flood Zones 1, 2, and 3 as follows: |
| - Flood Zone 1: 6.7km² (72%) |
| - Flood Zone 2: 1.8km² (19%) |
| - Flood Zone 3: 0.8km² (9%) |
| The majority (72%) of Esher is in Flood Zone 1. 28% (2.6km²) is within Flood Zones 2 or 3, of which 94% is Green Belt land and 6% is the fringe of the urban area where the River Mole or Rythe pass on either side of the of the built up area. |

Functional Floodplain

5.5% of the Settlement Area (0.5km²) is shown to be at risk during the 5% (1 in 20 year) annual probability flood event. This comprises the rural land adjacent to the River Mole west of West End. Areas within the 5% (1 in 20 year) annual probability flood outline are defined by Elmbridge BC as Flood Zone 3b Functional Floodplain, with the exception of developed areas which are prevented from flooding by the presence of existing infrastructure or solid buildings – these areas are not considered Functional Floodplain. Section 3.10 provides further information.

Climate Change

The extent of flooding associated with the River Mole is shown to increase during the 1% (1 in 100 year) annual probability flood event including an allowance for climate change, affecting the area of Lower Green.

Historic Records

Elmbridge BC hold records of fluvial flooding from the Rythe on Hare Lane, Raleigh Drive and Littleworth Road.

Flood Defences

The Environment Agency Asset Information Management Systems (AIMS) dataset identifies the presence of high ground either side of the River Rythe. As part of the Lower Mole Flood Alleviation Scheme earth embankments and concrete walls are present along the right and left banks of the Lower Mole West End to the River Thames. This area is formally identified as an area benefitting from flood defences on the Flood Map for Planning (Rivers and Sea).

| Flooding from Land |
|--------------------|---|
| The uFMfSW identifies a higher risk of surface water flooding in the natural topographic low points in the Settlement Area and where particular barriers present an obstruction behind which surface water can collect. Surface water is modelled to pond adjacent to the Rythe watercourse, in the open land in West End, in Drake’s Close, Riverside Drive, Lammas Lane and Wolsey Road. |

Historic Records

SCC have identified the following locations as known ‘wetspots’ which are susceptible to surface water flooding: West End Lane, Littleworth Road, Farm Road, Hare Lane, Winterdown Road, Mill Road, Portsmouth Road. Elmbridge BC also holds records of flooding on Drake’s Close.

| Flooding from Groundwater |
|--------------------------|---|
| In Source 6, the majority of the Settlement Area is classed as low risk i.e. limited potential for groundwater flooding to occur. This coincides with an area in which the groundwater table is expected to be >5m below the ground surface based on Source 7. In the northern and along the western fringe of the Settlement Area, there is a potential for groundwater flooding at the surface (High risk). In Source 7, these areas where there is a potential for groundwater flooding coincide with areas of superficial deposits in which the water table may be <3m below the ground surface. |

| Flooding from Sewers |
|---------------------|---|
| During the last 10 years internal flooding has affected 1-5 properties in the east of the Settlement Area. External flooding has affected 6-10 properties in the eastern part and 1-5 properties in the western part of the Settlement Area. |

| Reservoirs, canals, other artificial sources |
|---|---|
| There are no large surface water bodies within the Settlement Area. A smaller waterbody, Claremont Lake, is located in the Claremont Landscape Gardens. The water supply reservoirs including Queen Elizabeth II Reservoir, Island Barn Reservoir, Bessborough Reservoir and Knight Reservoir are located to the north of the Settlement Area. The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ shows that the area that could be |

Figures

- Figures B4, C11
- Figures B5
- Figures B7, B8
- Figure B4
- Figure D11
- Figure B4
Esher

flooded if one of these reservoirs were to fail and release the water it holds extends as far as the railway line that passes east-west through the north of the Settlement Area.

Managing and Mitigating Flood Risk

<table>
<thead>
<tr>
<th>Flood Warning Areas</th>
<th>The Warning Area relevant to the Settlement Area is: ‘River Mole at Esher and East Molesey’.</th>
<th>Figure B9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest Centres</td>
<td>There is no formally designated primary rest centre in the Esher Settlement Area. The rest centres in Hersham centre and Claygate centre are in close proximity to Esher. Depending on the type and extent of flooding in the local area, these centres may be available for use as emergency rest centres. The Multi Agency Flood Plan should be consulted for further information.</td>
<td>Figure B9</td>
</tr>
<tr>
<td>Infiltration SuDS Suitability</td>
<td>In Sources 8 and 9, the majority of the Settlement Area is likely to be suitable for the application of infiltration SuDS. In the northern and western areas, where the water table is <3m below the ground surface, there are likely to very significant constraints on the application of SuDS.</td>
<td>Figure B6</td>
</tr>
<tr>
<td>Site-specific FRA Guidance</td>
<td>Section 5 provides detailed guidance on measures to manage and mitigate flood risk, and Section 6 provides guidance on preparation of site-specific FRAs.</td>
<td>Section 6</td>
</tr>
<tr>
<td>Policy Recommendations</td>
<td>Section 7 provides spatial planning and development control recommendations for the Borough.</td>
<td>Section 7</td>
</tr>
</tbody>
</table>
General Information

<table>
<thead>
<tr>
<th>Area</th>
<th>Thames Ditton, Long Ditton, Hinchley Wood and Weston Green covers an area of 8.7km² comprising 66% urban area and 34% Green Belt.</th>
</tr>
</thead>
</table>

Character

The Settlement Area of Thames Ditton, Long Ditton, Hinchley Wood and Weston Green, is situated in the northeast of the Borough bordering the London Boroughs of Richmond and Kingston. The River Thames forms the boundary to the north with rural greenbelt to the south. The area contains 8,400 dwellings supporting a population of around 21,000.Whilst the majority of the built environment has in the past been developed at a higher density than other areas of Elmbridge, reflecting its location on the edge of London, the majority (69%) of all dwellings are still either detached or semi-detached houses. The area has convenient road and rail access to and from London and is served by three rail stations at Esher, Hinchley Wood and Thames Ditton.

Topography

The northern part of the Settlement Area is low lying land adjacent to the River Thames, at 5-10mAOD. Land rises steeply south of Hinchley Wood to levels of up to 50mAOD at the Surbiton Golf Course and the southern part of Long Ditton.

Geology

- Superficial: The Settlement Area is underlain by superficial deposits –either Kempton Park Gravel Formation (Sand & Gravel (S&G)), Langley Silt Member (Clay and Silt) or alluvium.
- Bedrock: The Settlement Area is underlain by London Clay Formation (Silt and Clay).

Aquifer Type

In Source 3, the superficial deposits are classified as either a principal aquifer or secondary aquifer undifferentiated. According to EA definitions, a principal aquifer is defined as having intergranular permeability, can provide a high level of water storage, can support water supply and/or river baseflow on a strategic scale. A secondary aquifer undifferentiated has been assigned in cases where it is not been possible to attribute whether either category A (general formation) or B (localised features) provides the flow mechanisms.

The underlying bedrock is classified as unproductive strata. According to EA definitions, unproductive strata are rock strata or drift deposits with low permeability that has negligible significance for water supply or river base flow.

Groundwater Vulnerability Classification and Source Protection Zone

In Source 4, the superficial deposits give the Settlement Area a major aquifer high category of risk vulnerability.

The EA defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. In Source 5, there are no SPZs within this Settlement Area.

The EA records of smaller abstractions have not been reviewed at this stage.

Main Rivers

- The River Rythe rises near Oxshott, in the Prince’s Coverts woodland and flows northwards, through Claygate and along the edge of Hinchley Wood. The river then follows the Portsmouth Road towards Thames Ditton, and runs into the River Thames near Ferry Road, forming the boundary between Kingston and Thames Ditton.
- The Lower Thames forms the boundary along the eastern edge of the Settlement Area. The Lower Thames floodplain is relatively broad and flat and the river itself contains several islands. The normal tidal limit of the River Thames occurs at Teddington Weir, approximately 5km downstream from Thames Ditton (TQ 1675 7149), but on a high tide, the tidal influence can extend as far back upriver as Molesey Weir.

Ordinary Watercourses

There are several drains and ordinary watercourses throughout the Settlement Area that are tributaries of the Rythe and drain areas including Surbiton Golf Course and Long Ditton in the east of the Settlement Area.
Thames Ditton, Long Ditton, Hinchley Wood and Weston Green

There is an ordinary watercourse that flows from Weston Green northwards to the confluence of the River Mole and River Thames near Ditton Field.

Flood Risk

Flood Zones
The Settlement Area is located within Flood Zones 1, 2, and 3 as follows:
- Flood Zone 1: 5km² (57%)
- Flood Zone 2: 3.1km² (36%)
- Flood Zone 3: 0.6km² (7%)

43% (3.7km²) of the Settlement Area is within Flood Zones 2 or 3, of which 33% is Green Belt land and 67% in the urban area. The River Rythe can cause significant damage as it responds more quickly to rainfall events than larger rivers.

Functional Floodplain
2.3% of the Settlement Area (0.2km²) is shown to be at risk during the 5% (1 in 20 year) annual probability flood event. This does not include the risk associated with the River Rythe as modelling is not currently available for this annual probability event. These areas include the developed areas of Thames Ditton Island, River Bank and Alexandra Road, as well as the undeveloped areas of Ditton Field. Areas within the 5% (1 in 20 years) annual probability flood outline are defined by Elmbridge BC as Flood Zone 3b Functional Floodplain, with the exception of developed areas which are prevented from flooding by the presence of existing infrastructure or solid buildings – these areas are not considered Functional Floodplain. Section 3.10 provides further information.

Climate Change
The extent of flooding associated with the River Thames is shown to increase slightly during the 1% (1 in 100 year) annual probability flood event including an allowance for climate change. The extent of flooding from the Lower Mole is also shown to increase, affecting parts of Lower Green north of the railway line.

Historic Records
Elmbridge BC and the Environment Agency hold records of flooding associated with the River Thames on Aragon Avenue, Queen’s Road, Alexandra Road, River Bank, Riversdale Road, Thames Ditton Island.

Flood Defences
The Environment Agency Asset Information Management Systems (AIMS) dataset identifies high ground on either side of the River Thames and the River Rythe.

This part of the River Thames is included in the proposed River Thames Scheme to implement flood risk management measures between Datchet and Teddington as described in Section 3.2.

Flooding from Rivers

Flooding from Land

The uFMfSW identifies a higher risk of surface water flooding in the natural topographic low points in the Settlement Area and where particular barriers present an obstruction behind which surface water can collect. Surface water is modelled to pond adjacent to the Kingston By-pass and Hinchley Way, along Claygate Lane and adjacent to the railway embankment.

Historic Records
SCC have identified the following locations as known ‘wetspots’ which are susceptible to surface water flooding: Watts Road, Station Road, Speer Road, Woodstock Lane South, Heathside, Portsmouth Road. Elmbridge BC also has records of flooding in Portsmouth Road and Couchmore Avenue.

Flooding from Groundwater

In Source 6, the central part of the Settlement Area is at high risk i.e. potential for groundwater flooding to occur at the surface. Some areas close by the River Thames are classified as medium risk i.e. potential for groundwater flooding of property situated below ground surface. These areas coincide with the Kempton Park Gravel Formation. In the high risk areas and based on Source 7, the groundwater table is predicted to be <3m below the ground surface and the medium risk areas to be 3-5m below the ground surface. The London Clay Formation which underlies the Kempton Gravel Park will play an important role in the risk rating. In the southwest of Settlement Area, there are small areas of low risk i.e. limited potential for groundwater flooding to occur.
Thames Ditton, Long Ditton, Hinchley Wood and Weston Green

Flooding from Sewers
During the last 10 years external flooding has affected properties at least 1-5 properties in all 4 post code boundaries that cover the Settlement Area. Internal flooding has been recorded at 1-5 properties in the 2 post code areas in the south of Hinchley Wood. It should be noted that 2 of the post code sectors extend into the neighbouring Settlement Areas, and therefore it is not possible to determine the precise location of the sewer flooding incidents.
The PFRA identifies that during periods of high water levels in the River Thames there can be issues relating to sewage surcharge in this area.

Reservoirs, canals, other artificial sources
There are no large surface water bodies within the Settlement Area. There are small ponds in the ground of The Manor House and Ditton Common off Alma Road.
The water supply reservoirs including Queen Elizabeth II Reservoir, Island Barn Reservoir, Bessborough Reservoir and Knight Reservoir are located to the west of the Settlement Area. The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ shows that Weston Green in the north west part of the Settlement Area could be flooded if one of these reservoirs were to fail and release the water it holds.

Managing and Mitigating Flood Risk

<table>
<thead>
<tr>
<th>Flood Warning Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Warning Areas relevant to the Settlement Area are: ‘River Thames at Thames Ditton’ and ‘River Mole at Esher and East Molesey’.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rest Centres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elmbridge BC has a designated primary rest centre in Thames Ditton Centre, on Mercer Close. Depending on the type and extent of flooding in the local area, this may be available for use as an emergency rest centre. The Multi Agency Flood Plan should be consulted for further information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infiltration SuDS Suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Sources 8 and 9, the central part of the Settlement Area is likely to suffer very significant constraints in the widespread use of infiltration SuDS. This is especially in the areas where the water table is <3m below the ground surface. In the other parts, there may be opportunities for bespoke infiltration SuDS, although this will depend on confirmation of the depths to the water table. Where water levels are found to be <3m below the surface, this may restrict use of SuDS.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site-specific FRA Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 5 provides detailed guidance on measures to manage and mitigate flood risk, and Section 6 provides guidance on preparation of site-specific FRAs. For sites located within or close to the floodplain of the River Rythe, results from the latest modelling study will need to be obtained from the Environment Agency to determine the risk of fluvial flooding. Modelling for the Lower Mole does not include all the Ordinary Watercourse tributaries in the catchment. For development sites in close proximity to these watercourses it is likely that modelling will be required in order to determine the probability of flooding and the flood levels to inform the site-specific FRA.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 7 provides spatial planning and development control recommendations for the Borough.</td>
</tr>
</tbody>
</table>
Claygate

General Information

Area
Claygate covers an area of **4.7km²** comprising **40% urban area** and **60% Green Belt**.

Character
Claygate is a small suburban village with only 2,577 dwellings and a population of nearly 7,000. It is surrounded by greenbelt that gives a distinct character to the village. The area is predominately residential with two retail areas. One focused around the village green on the High Street and Church Road and the other at the Parade, the main shopping area adjacent to the station. There is also one small area currently designated as Strategic Employment Land at Claygate House, Littleworth Lane.

Topography
The eastern part of the Settlement Area comprises high land, at approximately 40-70mAOD. The western fringe is low lying, where the River Rythe flows north. Levels in this area are between 15-20mAOD.

Geology
- **Superficial (Source 1)** - The Settlement Area is mainly free of any superficial deposits.
- **Bedrock (Source 2)** - The Settlement Area is underlain by Claygate Member (upper part of London Clay Formation (LCF) – Sand, Silt and Clay) and LCF (Silt and Clay).

Aquifer Type
In *Source 3*, the surface is classified as unproductive strata. According to EA definitions, unproductive strata are rock strata (see bedrock) or drift deposits with low permeability that has negligible significance for water supply or river base flow.

The underlying bedrock is classified as either a secondary A aquifer or unproductive strata. According to EA definitions, a secondary A aquifer is defined as a permeable layer capable of supporting water supplies a local rather than strategic scale and in some cases forming an important source of base flow to rivers. An important factor which influences this classification in Elmbridge is the limited thickness of the layers, in particular the Claygate Member in the Claygate area.

Groundwater Vulnerability Classification and Source Protection Zone
In *Source 4*, the surface is made up of different bedrocks giving the Settlement Area a range of risk vulnerabilities from minor aquifer high and intermediate (Claygate Member) to non-aquifer (LCF).

The EA defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. In *Source 5*, there are no SPZs within this Settlement Area. The EA records of smaller abstractions have not been reviewed at this stage.

Main Rivers
The Rythe flows northwards between Esher and Claygate in the west of the Settlement Area. One of the branches of the Rythe rises in the Prince’s Coverts woodland to the south of the Settlement Area, and then flows northwards through Claygate to join the main branch of the river.

Ordinary Watercourses
The north eastern corner of the Claygate Settlement Area is drained by a collection of drainage ditches that feed into a tributary of the Hogsmill River. The Hogsmill River passes through Kingston upon Thames and joins the River Thames near Kingston High Street.

Flood Risk

Flooding from Rivers

- **Flood Zones**
 - Flood Zone 1: 4.4km² (94%)
 - Flood Zone 2: 0.2km² (4%)
 - Flood Zone 3: 0.1km² (2%)

94% of Claygate is defined as Flood Zone 1. 6% (0.3km²) is within Flood Zones 2 or 3, which is all within the greenbelt area along the western edge of the Settlement Area near Milbourne Lodge Senior School.

74 Dwellings by Council Tax Band (VOA)
75 Resident Population Estimates 2010 (ONS)
Claygate

| Flooding from Land | Functional Floodplain and Climate Change | Modelling of the 5% (1 in 20 year) annual probability flood event, and the impact of climate change is not currently available for the River Rythe.
Historic Records | Elmbridge BC has records of fluvial flooding affecting Hare Lane and Rayleigh Drive.
Flood Defences | The Rythe is not formally defended. The Environment Agency Asset Information Management Systems (AIMS) dataset identifies high ground on either side of the watercourse. | Figure D13 |
| | Flooding from Groundwater | The uFMfSW identifies a higher risk of surface water flooding in the natural topographic low points in the Settlement Area and where particular barriers present an obstruction behind which surface water can collect. The mapping identifies surface water flood risk in the natural low points along the floodplain of the Rythe as well as to the east of the railway line near Horringdon Farm and in Wingham Court to the north of the village.
Historic Records | SCC have identified the following locations as known ‘wetspots’ which are susceptible to surface water flooding: Oaken Lane, Gordon Road, The Avenue, The Parade, Foley Road, Church Road, Coverts Road, and Littleworth Road. | Figure B5 |
| | Flooding from Sewers | During the last 10 years 1-5 properties have experienced internal flooding and 1-5 properties have experienced external flooding in the Claygate Settlement Area. | Figures B7, B8 |
| | Reservoirs, canals, other artificial sources | There are no known significant water bodies in the Settlement Area.
The water supply reservoirs including Queen Elizabeth II Reservoir, Island Barn Reservoir, Bessborough Reservoir and Knight Reservoir are located to the north of the Settlement Area. The Environment Agency dataset 'Risk of Flooding from Reservoirs' shows the area that could be flooded if one of these reservoirs were to fail and release the water it holds. The extent of flooding is shown not to extend as far as the Claygate Settlement Area.
There is a small waterbody known as Barwell Court Lake (owned by Rysaffe Trustee Company (C.I.) Ltd) immediately to the south of the Settlement Area that is included in the Environment Agency mapping; in the event of this watercourse releasing the water it holds, the water would follow the path of the Rythe and cause flooding in the Rythe floodplain in Claygate. | Figure B4 |
<p>| Managing and Mitigating Flood Risk | Flood Warning Areas | The Environment Agency operates a Flood Warning Service for areas at risk of fluvial flooding from Main Rivers. There is currently no specific Flood Warning Area associated with the River Rythe, however this may be revised following the completion of modelling study. The Flood Warning Area for the downstream catchment, into which the River Rythe drains, is ‘River Thames at Thames Ditton’. | Figure B9 |
| | Rest Centres | Elmbridge BC has a designated primary rest centre in Claygate Centre, on Elm Road. Depending on the type and extent of flooding in the local area, this may be available for use as an emergency rest centre. The Multi Agency Flood Plan should be consulted for further information. | Figure B9 |
| | Infiltration SuDS Suitability | In Source 6, only in the eastern part of the built-up area around Claygate is classed as low risk i.e. limited potential for groundwater flooding to occur. This area coincides with an area of Claygate Member (upper part of the London Clay Formation) and from which springs may issue forth at the contact with underlying rest of the London Clay Formation. | Figure B6 |
| | Site-specific FRA Guidance | Section 5 provides detailed guidance on measures to manage and mitigate flood risk, and Section 6 provides guidance on preparation of site-specific FRAs. For sites located within or close to the floodplain of the River Rythe, results from the latest modelling study will need to be obtained from the Environment Agency to determine the probability of fluvial flooding. | Section 6 |</p>
<table>
<thead>
<tr>
<th>Claygate</th>
<th>flooding and specific flood levels to inform a site-specific FRA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Recommendations</td>
<td>Section 7 provides spatial planning and development control recommendations for the Borough.</td>
</tr>
</tbody>
</table>
APPENDIX F SAMPLE SITE ASSESSMENTS

This Section presents sample assessments for 5 potential development sites in Elmbridge. For each site, the information included within the SFRA is used to provide an assessment of the flood risk to the site from all sources. In addition, guidance and recommendations are provided regarding the issues that would need to be addressed as part of a site-specific FRA for the site.

It should be noted that these schedules are not an exhaustive assessment for each site and further work will need to be undertaken as part of the site-specific FRA for each of the sites in accordance with the scale of the development and the degree of flood risk posed to and from the site.

The sites that have been assessed within this Section are:

- Hurst Park Primary School, East and West Molesey
- Land at Former Molesey Sewage Works, Walton-on-Thames
- Unit 1 Hampton Court Estate, Thames Ditton
- John Nightingale School, East and West Molesey
- Vermont Exchange, Cobham
HURST PARK PRIMARY SCHOOL

1) DEVELOPMENT DESCRIPTION AND LOCATION

<table>
<thead>
<tr>
<th>Area</th>
<th>1.18 hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settlement Area</td>
<td>East and West Molesey</td>
</tr>
<tr>
<td>Topography</td>
<td>Ground levels vary between approximately 9.5 and 10.5mAOD across the site (based on 1m resolution LiDAR data from the Environment Agency).</td>
</tr>
<tr>
<td>Geology</td>
<td>The site is underlain by superficial deposits – either Kempton Park Gravel Formation (Sand & Gravel (S&G)) or alluvium. The bedrock underlying the site is London Clay Formation (Silt and Clay).</td>
</tr>
<tr>
<td>Aquifer Type</td>
<td>The superficial deposits are classified as a principal aquifer. According to Environment Agency definitions, a principal aquifer is defined as having intergranular permeability, can provide a high level of water storage, can support water supply and/or river base flow on a strategic scale. The underlying bedrock is classified as unproductive strata. The Environment Agency define unproductive strata as rock strata or drift deposits with low permeability that has negligible significance for water supply or river base flow.</td>
</tr>
<tr>
<td>Groundwater Vulnerability Classification and Source Protection Zone</td>
<td>The superficial deposits give the local area a major aquifer high category of risk vulnerability. The Environment Agency defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. There are no SPZs within the local area.</td>
</tr>
<tr>
<td>Main Rivers</td>
<td>The River Thames flows along the northern boundary of the site.</td>
</tr>
<tr>
<td>Ordinary Watercourses</td>
<td>The Environment Agency Detailed River Network does not identify any ordinary watercourses local to the site.</td>
</tr>
</tbody>
</table>

2) ASSESS FLOOD RISK

Flooding from Rivers

Flood Zones

The site is located within Flood Zone 1. The River Thames Functional Floodplain (Flood Zone 3b) is located immediately to the north.
HURST PARK PRIMARY SCHOOL

of the site, and land immediately east of the site is located in Flood Zone 2.

Historic Records

The Hurst Park Primary School site is not within the Environment Agency Historic Flood Map outline associated with fluvial flooding (pink dashed outline). Of the historic flood records provided by EBC and the Environment Agency during the preparation of this SFRA, no records have been provided local to the site.

Flood Defences

The Environment Agency AIMS dataset identifies that the River Thames is not formally defended in this location. The AIMS dataset identifies high ground adjacent to the River Thames along the reach to the north of the site.

Flooding from Groundwater

The majority of the area local to the site is classed as high risk according to the BGS Susceptibility to Groundwater Flooding dataset i.e. potential for groundwater flooding to occur at the surface. Some areas close by the River Thames are classed as medium risk i.e. potential for groundwater flooding of property situated below ground surface. This is because much of the area is covered by Kempton Park Gravel Formation. In the high risk areas and based on Source 7, the groundwater table is predicted to be <3m below the ground surface and the medium risk areas to be 3-5m below the ground surface. A factor in influencing this risk is that the beneath the River Terrace Deposits lies the London Clay Formation. Site investigations will be required to determine the precise conditions of this site.

Flooding from Sewers

During the last 10 years there have been no recorded incidents of sewer flooding (either internal or external) within the postcode area in which the site is located.

Flooding from Land

The local area is relatively flat and low lying. However the site is located at a slightly higher elevation than the surrounding land. The Environment Agency uFMfSW identifies the western side of the site to be at Low risk of surface water flooding and the rest of the site at Very Low risk.

Historic Records

There are no known records of surface water flooding local to the site within the records collected as part of this SFRA. SCC have identified Hurst Road approximately 350 west, and Walton Road and St Peters Road approximately 500m south of the site as known ‘wetspots’ which are susceptible to surface water flooding.

Reservoirs, canals, other artificial sources

The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ identifies the area that could be flooded if a large reservoir were to fail and release the water the hold. This dataset identifies that the site could be at risk of inundation from the Queen Elizabeth II Reservoir and the Bessborough Reservoir and could experience depths of 0.3 – 2m.

The Molesey Reservoirs Nature Reserve comprising two former gravel pits is also located to the west of the site, adjacent to the River Thames. These reservoirs and water bodies are regularly inspected and maintained. As such the probability of flooding from these sources is low.

3) PROPOSED DEVELOPMENT

Current Use	School
Proposed Use	Residential
Vulnerability	More Vulnerable

4) AVOID FLOOD RISK

Sequential Test

The site is located in Flood Zone 1 and is therefore considered to have passed the Sequential Test.

Exception Test

More Vulnerable development is considered appropriate within Flood Zone 1 in accordance with the NPPF and does not require consideration of the Exception Test.

5) MANAGE AND MITIGATE FLOOD RISK

Development Layout and Sequential

The sequential approach should be applied within the site to locate the most vulnerable elements of the development in areas at lowest risk of flooding i.e. where possible locate the...
<table>
<thead>
<tr>
<th>HURST PARK PRIMARY SCHOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
</tr>
<tr>
<td>residential dwellings away from the northern edge of the site, and not in areas at risk of surface water ponding. Less Vulnerable uses such as open space, communal areas and landscaping should be located in those areas at greater risk of flooding. Measures to manage surface water on the site should be considered early in the site masterplan to enable inclusion of attenuation SuDS where possible.</td>
</tr>
<tr>
<td>Finished Floor Levels</td>
</tr>
<tr>
<td>When considering fluvial sources, the Environment Agency requires a minimum freeboard of 300mm above the 1% annual probability fluvial design flood level including climate change for More Vulnerable development. As part of a site-specific FRA, modelled flood levels for the River Thames local to the site should be obtained from the Environment Agency to demonstrate that FFL are appropriate.</td>
</tr>
<tr>
<td>Safe Access / Egress</td>
</tr>
<tr>
<td>Access to the site is provided via Hurst Road, which is shown to be located outside of the flood outline for the 1% (1 in 100 year) annual probability flood event including an allowance for climate change. Safe access/egress is therefore considered to be achievable for this site with respect to fluvial flood risk. This should be confirmed as part of a site specific FRA.</td>
</tr>
<tr>
<td>Riverside Development Buffer Zones</td>
</tr>
<tr>
<td>Development should be set back from the edge of the River Thames by at least 8m and opportunities explored for riverside restoration. Any works within 8m will require Environment Agency consent (Section 109 Water Resources Act 1991 and/or Environment Agency Byelaws).</td>
</tr>
<tr>
<td>Surface Water Management</td>
</tr>
<tr>
<td>In line with the National SuDS Standards for previously developed sites such as this, runoff rates and volumes should be constrained to a value as close as is reasonably practical to the greenfield runoff rates and volumes, but must not exceed the rate or volume from the development site prior to redevelopment. Where it is not possible to achieve these required standards, the designated SAB will require suitable evidence (e.g. drainage assessment and modelling) to demonstrate why such betterment cannot be achieved and the runoff volume must be discharged at a rate that does not adversely affect flood risk. Surface water drainage proposals must also have a clear plan for the long term maintenance and adoption of the systems, prior to approval of any planning permission. Sources 8 and 9 suggest that the development site is likely to suffer very significant constraints in the widespread use of infiltration SuDS and therefore attenuation SuDS measures should be incorporated into the development design. This is especially in the areas where the water table is <3m below the ground surface. In the areas where the water table is 3-5m below the ground surface, there may be opportunities for bespoke infiltration SuDS. Further confirmation of depth to the water table will be required as part of site investigations in order to inform the SuDS design for this site.</td>
</tr>
<tr>
<td>Flood Warning and Evacuation Plan</td>
</tr>
<tr>
<td>Although the site is located in an area of low probability of fluvial flooding, it is located directly next to the River Thames and the area immediately to the east of the site is at greater risk of flooding. It is recommended that a Flood Warning and Evacuation Plan is prepared for the site, detailing the course of action to be taken before, during and after flood events in the local area. Flood Warning Areas The site is not shown to be covered by the Environment Agency Flood Warning Areas. However the area to the east of the site (within Flood Zone 2) is covered by the Flood Warning Area for the ‘River Thames at East and West Molesey’. Given the proximity of the site to the River Thames and its floodplain, residents of the site should ensure they are signed up to the Environment Agency Flood Warning system. Rest Centres Elmbridge BC has designated primary rest centres in East Molesey centre (Bishops Fox Way) and Walton centre (Manor Road) which may be operational during flooding, dependent upon the type and extent of flooding in the area. The Multi Agency Flood Plan should be consulted for further information regarding the use of these centres.</td>
</tr>
</tbody>
</table>
LAND AT FORMER MOLESEY SEWAGE TREATMENT WORKS

1) DEVELOPMENT DESCRIPTION AND LOCATION

<table>
<thead>
<tr>
<th>Area</th>
<th>3.21 hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settlement Area</td>
<td>Walton-on-Thames</td>
</tr>
</tbody>
</table>

Topography
Ground levels vary between approximately 9 and 11m AOD across the site (based on 1m resolution LiDAR data from the Environment Agency).

Geology
The site is underlain by superficial deposits of alluvium. The bedrock underlying the site is London Clay Formation (Silt and Clay).

Aquifer Type
The superficial deposits are classified as a secondary aquifer undifferentiated. This designation is assigned in cases where it is not possible to attribute whether category A (general formation) or B (localised features) provide the flow mechanisms. The underlying bedrock is classified as unproductive strata. The Environment Agency define unproductive strata as rock strata or drift deposits with low permeability that has negligible significance for water supply or river base flow.

Groundwater Vulnerability Classification and Source Protection Zone
The superficial deposits give the local area a major aquifer high category of risk vulnerability. The Environment Agency defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. There are no SPZs within the local area.

Main Rivers
The Dead River flows along the northern boundary of the site and the River Mole flows north along the eastern edge of the site. The two rivers meet at the north east corner of the site.

Ordinary Watercourses
The Environment Agency Detailed River Network does not identify any ordinary watercourses local to the site.

2) ASSESS FLOOD RISK

Flooding from Rivers

Flood Zones
The site is located almost entirely within Flood Zone 1. The northern and eastern edges of the site are adjacent to the floodplain of the Dead River and Lower Mole and therefore the fringe of the site is within Flood Zone 3b Functional Floodplain, as follows:
HURST PARK PRIMARY SCHOOL

- Flood Zone 1 (present day): 3.13 hectares (97.5%)
- Flood Zone 3b (Undeveloped - Functional Floodplain) (present day): 0.08 hectares (2.5%)

As part of a site-specific FRA for this site, the flood levels from the modelling of the Dead River and Lower Mole should be obtained from the Environment Agency and compared with the ground levels across the site from a site-specific topographic survey to determine more accurately the risk of flooding to the edge of the site.

Historic Records

The site is within the Environment Agency Historic Flood Map outline associated with fluvial flooding (pink dashed outline). Of the records of historic flood incidents provided by EBC and the Environment Agency for this SFRA, there are no records local to the site.

Flood Defences

The Environment Agency AIMS dataset identifies that the Dead River and River Mole are not formally defended in this location. The AIMS dataset identifies high ground adjacent to the watercourses along the reaches near the site.

Flooding from Groundwater

A review of the BGS Susceptibility to Groundwater Flooding dataset shows that the area to the south of the site is considered to be high and medium risk, i.e. potential for groundwater flooding to occur at the surface and of property situated below ground surface. The land to the north of the site is not considered to be prone to groundwater flooding.

Site investigations will be required on the site to determine the precise conditions and the depth to the groundwater table.

Flooding from Sewers

During the last 10 years there have been no recorded incidents of sewer flooding (either internal or external) within the post code area in which the site is located.

Reservoirs, canals, other artificial sources

The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ identifies the area that could be flooded if a large reservoir were to fail and release the water the hold. This dataset identifies that the site could be at risk of inundation from Island Barn Reservoir, Queen Elizabeth II Reservoir and the Bessborough Reservoir. Modelled flood depths of 0.3 – 2m could be experienced over the majority of the site, and greater than 2m along the northern edge.

These reservoirs are regularly inspected and maintained. As such the probability of flooding from these sources is low.

3) PROPOSED DEVELOPMENT

<table>
<thead>
<tr>
<th>Proposed Use</th>
<th>Housing / Gypsy and Traveller Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnerability</td>
<td>More Vulnerable / Highly Vulnerable</td>
</tr>
</tbody>
</table>

4) AVOID FLOOD RISK

<table>
<thead>
<tr>
<th>Sequential Test</th>
<th>Most of the site is located within Flood Zone 1 and is therefore considered to pass the Sequential Test provided no development is located in Flood Zone 3b (Undeveloped – Functional Floodplain).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exception Test</td>
<td>In Flood Zone 1, More Vulnerable and Highly Vulnerable developments are both appropriate. Consideration of the Exceptions Test is not required provided no development is located in Flood Zone 3b (Undeveloped - Functional Floodplain).</td>
</tr>
</tbody>
</table>

5) MANAGE AND MITIGATE FLOOD RISK

<table>
<thead>
<tr>
<th>Development Layout and Sequential Approach</th>
<th>A sequential approach to site layout should be used. Highly and More Vulnerable elements of the development (traveller site and residential properties) should be located away from the watercourses in the south and west of the site. Uses with lower vulnerability, including landscaping, open communal space and car parking facilities should be located in the northern and eastern edge of the site.</th>
</tr>
</thead>
</table>

Section 5.2
<table>
<thead>
<tr>
<th>HURST PARK PRIMARY SCHOOL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures to manage surface water on the site should be considered early in the site masterplan to enable inclusion of attenuation SuDS where possible.</td>
<td></td>
</tr>
<tr>
<td>Finished Floor Levels</td>
<td>When considering fluvial sources, the Environment Agency requires a minimum freeboard of 300mm above the 1% annual probability fluvial design flood level including climate change for More Vulnerable development such as housing. As part of a site-specific FRA, modelled flood levels for the Dead River and Lower Mole local to the site should be obtained from the Environment Agency to demonstrate designed finished floor levels on the site are appropriate.</td>
</tr>
<tr>
<td>Safe Access/Egress</td>
<td>Access to the site is provided via Approach Road which crosses over the channel of the Dead River immediately adjacent to the site. In the event of widespread flooding from these watercourses, there is potential that dry routes out of the local area to a safe place of refuge may be limited. As part of a site-specific FRA, further analysis of the modelled flood depth and hazard information should be undertaken to determine an appropriate access/egress route.</td>
</tr>
<tr>
<td>Riverside Development Buffer Zones</td>
<td>Development should be set back from the edge of the Dead River and River Mole by at least 8m and opportunities sought for riverside restoration. Any works within 8m will require Environment Agency consent (Section 109 Water Resources Act 1991 and/or Environment Agency Byelaws). The natural floodplain of these watercourses and the storage the floodplain provides should be retained within the site.</td>
</tr>
<tr>
<td>Surface Water Management</td>
<td>In line with the National SuDS Standards for previously developed sites such as this, runoff rates and volumes should be constrained to a value as close as is reasonably practical to the greenfield runoff rates and volumes, but must not exceed the rate or volume from the development site prior to redevelopment. Where it is not possible to achieve these required standards, Elmbridge BC and SCC will require suitable evidence (e.g. drainage assessment and modelling) to demonstrate why such betterment cannot be achieved and the runoff volume must be discharged at a rate that does not adversely affect flood risk. Sources 8 and 9 suggest that the development site is likely to suffer very significant constraints in the widespread use of infiltration SuDS and therefore the use of attenuation SuDS should be maximised. This is especially in the areas where the water table is <3m below the ground surface. In the areas where the water table is 3-5m below the ground surface, there may be opportunities for bespoke infiltration SuDS. Further confirmation of depth to the water table will be required as part of site investigations in order to inform the SuDS design for this site.</td>
</tr>
<tr>
<td>Flood Warning and Evacuation Plan</td>
<td>Given the proximity of the site to the Dead River and Lower Mole and the limited access/egress route away from the site, a Flood Warning and Evacuation Plan should be prepared for the site. The Flood Warning and Evacuation Plan should detail how flood warning will be provided, what will be done to protect development and contents, how the safety of occupants and access to/from the development will be ensured either through provision of a safe means of escape, evacuation prior to the onset of flooding, or measures to enable occupants to remain on the site in the event of widespread flooding in the local area.</td>
</tr>
<tr>
<td>Flood Warning Areas</td>
<td>The site and local area is covered by the Environment Agency Flood Warning Areas for ‘River Mole at Esher and East Molesey’. Residents of the site should ensure they are signed up to the Environment Agency Flood Warning system.</td>
</tr>
<tr>
<td>Rest Centres</td>
<td>Elmbridge BC has designated primary rest centres in East Molesey centre (Bishops Fox Way) and Walton centre (Manor Road) which may be operational during flooding, dependent upon the type and extent of flooding in the area. The Multi Agency Flood Plan should be consulted for further information regarding the use of these centres.</td>
</tr>
</tbody>
</table>
UNIT 1 HAMPTON COURT ESTATE

1) DEVELOPMENT DESCRIPTION AND LOCATION

Area
0.86 hectares

Settlement Area
Thames Ditton, Long Ditton, Hinchley Wood and Weston Green

Topography
Ground levels vary between approximately 9 and 11m AOD across the site (based on 1m resolution LiDAR data from the Environment Agency).

Geology
The site is underlain by superficial deposits of alluvium. The bedrock underlying the site is London Clay Formation (Silt and Clay).

Aquifer Type
The superficial deposits are classified as a secondary aquifer undifferentiated. This designation is assigned in cases where it is not possible to attribute whether category A (general formation) or B (localised features) provide the flow mechanisms. The underlying bedrock is classified as unproductive strata. The Environment Agency define unproductive strata as rock strata or drift deposits with low permeability that has negligible significance for water supply or river base flow.

Groundwater Vulnerability Classification and Source Protection Zone
The superficial deposits give the local area a major aquifer high category of risk vulnerability. The Environment Agency defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. There are no SPZs within the local area.

Main Rivers
The site is located immediately south of the confluence of the former River Ember and the River Mole. Approximately 250m east of the site is the confluence of the Rivers Mole and Thames.

Ordinary Watercourses
An ordinary watercourse flows north from Weston Green adjacent to the railway line and then along the western edge of the site, before joining the River Mole watercourse at the northern end of the site.

2) ASSESS FLOOD RISK

Flooding from Rivers

Flood Zones
UNIT 1 HAMPTON COURT ESTATE

The site is located entirely within Flood Zone 2 associated with the River Thames and River Mole. The site is also entirely within the flood outline for the 1% (1 in 100 year) annual probability flood event including an allowance for climate change.

Historic Records

The site is within the Environment Agency Historic Flood Map outline associated with fluvial flooding (pink dashed outline). Of the records of historic river flood incidents provided by EBC and the Environment Agency for this SFRA, there are no records local to the site.

Flood Defences

The Environment Agency AIMS dataset identifies the presence of high ground adjacent to the River Thames and the majority of the River Mole in proximity to the site. There is a flood wall along the River Ember channel close to the site.

Available Hydraulic Modelling

The Environment Agency holds modelling for the Lower Mole and River Thames. The Lower Mole model is 1D and therefore only flood extent and flood level information is available. The modelling of the River Thames is a 2D model and information on flood extent, flood levels, flood depths and hazard rating is available.

Modelling of the River Thames identifies that during the flood event with 1% annual probability (1 in 100 year) including an allowance for climate change the site is at risk of flooding of depths of at least 0.3 – 0.5m, with greater depths along the western edge of the site along the course of the ordinary watercourse. The hazard rating is Low.

Further Work Required

As part of a site-specific FRA for this site, flood level information should be obtained from the Environment Agency for the River Thames and Lower Mole in close proximity to the site in order to determine more accurately the flood depths on the site and to inform...
UNIT 1 HAMPTON COURT ESTATE

finished floor levels (see below).

In addition, a site walkover survey should be undertaken to determine the size and characteristics of the ordinary watercourse that passes along the western edge of the site and whether modelling of this watercourse would be required to provide an indication of the level of flood risk associated with the watercourse as part of the site-specific FRA. The need for modelling will, to some extent, depend on the density of development proposed on the site and how far it is feasible to set development back from the edge of the watercourse.

Flooding from Land

The Environment Agency uFMfSW identifies the western edge of the site to be a Medium Risk of surface water flooding (1% annual probability or 1 in 100 year). This is associated with the presence of the ordinary watercourse in this part of the site.

Historic Records

SCC has provided locations of known 'wet spots' which are susceptible to surface water flooding. Wet spots have been identified on Feltham Avenue and Walton Road, to the north and west of the site respectively.

Flooding from Groundwater

The area local to the site is considered to be at high risk, i.e. potential for groundwater flooding to occur at the surface. Site investigations will be required on the site to determine the precise conditions and the depth to the groundwater table. Subject to the findings of site investigations, basement development may not be appropriate on this site.

Flooding from Sewers

During the last 10 years there have been 1-5 recorded incidents of external sewer flooding and 21-30 recorded incidents of internal sewer flooding within the post code areas in which the site is located. This may indicate pressure on the existing sewer network in this part of the Borough.

Reservoirs, canals, other artificial sources

The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ identifies the area that could be flooded if a large reservoir were to fail and release the water the hold. This dataset identifies that the site could be at risk of inundation from up to 6 reservoirs; Wraysbury Reservoir, Island Barn, Queen Mary, Queen Elizabeth II, Queen Mother and Bessborough Reservoir. Modelled flood depths of greater than 2m could be experienced on the site as a result. These reservoirs are regularly inspected and maintained. As such the probability of flooding from these sources is low.

3) PROPOSED DEVELOPMENT

Current Use

Industrial / Storage

Proposed Use

Housing / Hotel

Vulnerability

More Vulnerable

Table 4-1

4) AVOID FLOOD RISK

Sequential Test

Elmbridge BC should be consulted regarding the status of the Sequential Test. Where the Sequential Test has not been undertaken for the site, refer to Section 4.3 for guidance regarding applying the Sequential Test to individual applications.

Section 4.3

Exception Test

More Vulnerable development is considered appropriate in Flood Zone 2 and does not require application of the Exception Test.

Table 4-2

5) MANAGE AND MITIGATE FLOOD RISK

Development Layout and Sequential Approach

A sequential approach to site layout should be used. More Vulnerable elements of the development (residential properties) should be located away from the watercourse. Uses with lower vulnerability, including landscaping, open communal space and car parking facilities should be located along the western edge of the site. Measures to manage surface water on the site should be considered early in the site masterplan to enable inclusion of attenuation SuDS where possible.

Section 5.2

Finished Floor Levels

A minimum freeboard of 300mm above the 1% annual probability fluvial flood level (1 in 100 year) including climate change for More Vulnerable development such as housing. There is

Section 5.3
UNIT 1 HAMPTON COURT ESTATE

Flood Resistence

Flood resistant construction methods should be considered on the site to minimise the impact of floodwaters directly affecting any buildings and provide occupants time to take steps to protect contents if necessary.

Section 5.4

Flood Resilience

Flood resilient measures could also be considered on the site. These measures are appropriate where modelled flood depths are higher (e.g. >0.6m). The strategy should be to allow water into the building, but to implement careful design in order to minimise damage and allow rapid re-occupancy.

Section 5.5

Safe Access/Egress

Access to the site is provided via Summer Road to the south at the southern end of the site. In the event of widespread flooding associated with the River Mole and River Thames, there is potential that dry routes out of the local area to a safe place of refuge may be limited. It will therefore be necessary to prepare a Flood Warning and Evacuation Plan for residents / occupants of the site detailing steps to evacuate the site prior to the onset of flooding, or measures to enable occupants to remain on the site in the event of widespread flooding in the local area.

Section 5.6

Floodplain Compensation Storage

Where proposed development results in an increase in building footprint, the developer must ensure that it does not impact upon the ability of the floodplain to store water and that it does not impact upon floodwater flow conveyance.

This site is located within the outline of the 1% (1 in 100 year) annual probability flood event including an allowance for climate change. Within this area, new development must not result in a net loss of flood storage capacity and any increase in building footprint must be compensated for on a level for level basis.

Where full floodplain compensation cannot be achieved, the use of flood voids can be considered to mitigate any loss of floodplain storage.

Section 5.7

Flow Routing

New development should not adversely affect flood routing and thereby increase flood risk elsewhere. On this site, opportunities should be sought to make space for water, such as:

- Removing boundary walls or replacing with other boundary treatments such as hedges, fences (with gaps).
- Create under-croft car parks or consider reducing ground floor footprint and creating an open area under the building to allow flood water flow.
- Where proposals include floodable outbuildings or garages, design the external walls to enable the free flow of floodwater.

Section 5.8

Surface Water Management

In line with the National SuDS Standards for previously developed sites such as this, runoff rates and volumes should be constrained to a value as close as is reasonably practical to the greenfield runoff rates and volumes, but must not exceed the rate or volume from the development site prior to redevelopment.

Where it is not possible to achieve these required standards, Elmbridge BC and SCC will require suitable evidence (e.g. drainage assessment and modelling) to demonstrate why such betterment cannot be achieved and the runoff volume must be discharged at a rate that does not adversely affect flood risk.

Sources 8 and 9 suggest that the development site is likely to suffer very significant constraints in the widespread use of infiltration SuDS and therefore the use of attenuation features on site should be incorporated into the site design. This is especially in the areas where the water table is <3m below the ground surface. In the areas where the water table is 3-5m below the ground surface, there may be opportunities for bespoke infiltration SuDS.

Further confirmation of depth to the water table will be required as part of site investigations in order to inform the SuDS design for this site.

Section 5.10

Flood Warning and Evacuation Plan

A Flood Warning and Evacuation Plan should be prepared for the site, detailing how flood warning will be provided, what will be done to protect development and contents, how the safety of occupants and access to/from the development will be ensured.

Section 5.11
UNIT 1 HAMPTON COURT ESTATE

<table>
<thead>
<tr>
<th>Flood Warning Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>The local area is covered by the Environment Agency Flood Warning Areas for ‘River Mole at Esher and East Molesey’ and ‘River Thames at Thames Ditton’. Residents of the site should ensure they are signed up to the Environment Agency Flood Warning system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emergency Rest Centres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elmbridge BC has designated primary rest centre in East Molesey centre, on Bishops Fox Way, and in Thames Ditton Centre, on Mercer Close which may be operational during flooding, dependent upon the type and extent of flooding in the area. The Multi Agency Flood Plan should be consulted for further information regarding the use of these centres.</td>
</tr>
</tbody>
</table>

Figure B9
JOHN NIGHTINGALE SCHOOL

1) DEVELOPMENT DESCRIPTION AND LOCATION

<table>
<thead>
<tr>
<th>Area</th>
<th>1.81 hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settlement Area</td>
<td>East and West Molesey</td>
</tr>
<tr>
<td>Topography</td>
<td>Ground levels vary between approximately 8.75 and 10.5mAOD across the site (based on 1m resolution LiDAR data from the Environment Agency). Figure B1</td>
</tr>
<tr>
<td>Geology</td>
<td>Superficial (Source 1) - the site is underlain by superficial deposits – either Kempton Park Gravel Formation (Sand & Gravel (S&G)) or alluvium. Bedrock (Source 2) - the site is underlain by London Clay Formation (Silt and Clay). Figures B2, B3</td>
</tr>
<tr>
<td>Aquifer Type</td>
<td>In Source 3, the superficial deposits are classified as a principal aquifer. According to Environment Agency definitions, a principal aquifer is defined as having intergranular permeability, can provide a high level of water storage, can support water supply and/or river base flow on a strategic scale. The underlying bedrock is classified as unproductive strata. The Environment Agency define unproductive strata as rock strata or drift deposits with low permeability that has negligible significance for water supply or river base flow.</td>
</tr>
<tr>
<td>Groundwater Vulnerability Classification and Source Protection Zone</td>
<td>In Source 4, the superficial deposits give the local area a major aquifer high category of risk vulnerability. The Environment Agency defines Source Protection Zones (SPZ) around all major public and private water supply abstractions in order to safeguard groundwater resources from potentially polluting activities. In Source 5, there are no SPZs within the local area.</td>
</tr>
<tr>
<td>Main Rivers</td>
<td>The River Thames is located approximately 370m north of the site. The Dead River flows from west to east approximately 1km to the south of the site. Figure C10</td>
</tr>
<tr>
<td>Ordinary Watercourses</td>
<td>The Environment Agency Detailed River Network does not identify any ordinary watercourses local to the site. Figure C10</td>
</tr>
</tbody>
</table>

2) ASSESS FLOOD RISK

Flooding from Rivers

![Flooding from Rivers](Contains Environment Agency information © Environment Agency and database right 2014. Crown Copyright. All Rights Reserved. Elmbridge Borough Council LA 100024882 2014)

Flood Zones

LEGEND
- Sample Site Boundary
- Settlement Area boundary
- Main River
- Ordinary Watercourse
- Flood Defence - Embankment
- Flood Defence - High Ground
- Flood Defence - Wall
- Historic Flood Map
- Surrey County flood study
- EA-Recorded Flood Incidents
- EBC-Recorded Flood Incidents
- Elmbridge Primary Flood Carriers
- Flood Zones
 - Flood Zone 1 Low Probability
 - Flood Zone 2 Medium Probability
 - Flood Zone 3 High Probability
 - 1% annual probability flood outline
 - Area Benefitting from Defences
The site is shown to be located partially within Flood Zones 1 and 2 associated with the Dead River, as follows:

- Flood Zone 1 (present day): 0.81 hectares (45%)
- Flood Zone 2 (present day): 1 hectare (55%)

Historic Records

The John Nightingale Primary School site is within the Environment Agency Historic Flood Map outline associated with fluvial flooding. Of the records of historic flood incidents provided by EBC and the Environment Agency for this SFRA, there are no specific records local to the site.

Flood Defences

The Environment Agency AIMS dataset identifies that the Dead River is not formally defended in this location. The AIMS dataset identifies the presence of high ground adjacent to the watercourse.

Flooding from Land

The local area is relatively flat and low lying. The Environment Agency uFMfSW identifies that the southern half of the site may be susceptible to the ponding of surface water during heavy rainfall events.

Historic Records

There are no known records of surface water flooding local to the site within the records collected as part of this SFRA. SCC have identified Walton Road and St Peters Road approximately 500m east of the site as known ‘wetspots’ which are susceptible to surface water flooding.

Flooding from Groundwater

In Source 6, the majority of the area local to the site is classed as high risk i.e. potential for groundwater flooding to occur at the surface. This is because much of the area is covered by Kempton Park Gravel Formation. In the high risk areas and based on Source 7, the groundwater table is predicted to be <3m below the ground surface and the medium risk areas to be 3-5m below the ground surface. A factor in influencing this risk is that the beneath the River Terrace Deposits lies the London Clay Formation.

Flooding from Sewers

During the last 10 years there have been no recorded incidents of sewer flooding (either internal or external) within the post code area in which the site is located.

Reservoirs, canals, other artificial sources

The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ identifies the area that could be flooded if a large reservoir were to fail and release the water the hold. This dataset identifies that the site could be at risk of inundation from Island Barn Reservoir, Knight Reservoir, Queen Mary Reservoir, Queen Elizabeth II Reservoir or Bessborough Reservoir. The mapping identifies that the site could experience flood depths of more than 2m. The Molesey Reservoirs Nature Reserve comprising two former gravel pits is also located to the north west of the site, adjacent to the River Thames. These reservoirs and water bodies are regularly inspected and maintained. As such the probability of flooding from these sources is low.

3) PROPOSED DEVELOPMENT

<table>
<thead>
<tr>
<th>Current Use</th>
<th>Proposed Use</th>
<th>Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacant land</td>
<td>Primary School</td>
<td>More Vulnerable</td>
</tr>
</tbody>
</table>

4) AVOID FLOOD RISK

Sequential Test

Elmbridge BC should be consulted regarding the status of the Sequential Test. Where the Sequential Test has not been undertaken for the site, refer to Section 4.3 for guidance regarding applying the Sequential Test to individual applications.

Exception Test

More Vulnerable development is considered appropriate within Flood Zone 1 and 2 in accordance with the NPPF and does not require the Exception Test.

5) MANAGE AND MITIGATE FLOOD RISK
The sequential approach should be applied within the site; the most vulnerable elements of the development (class rooms, assembly halls etc.) should be located in the north of the site (Flood Zone 1 Low Probability) whilst sports pitches, car parking and landscaped areas should be located in the southern half of the site where the probability of flooding is greater (Flood Zone 2 Medium Probability).

Measures to manage surface water on the site should be considered early in the site masterplan to enable inclusion of attenuation SuDS where possible.

A minimum freeboard of 300mm above the 1% annual probability fluvial flood level (1 in 100 chance each year) including climate change for More Vulnerable development. There is no set guidance for the setting of finished floor levels of development in relation to surface water flood risk.

Flood resistant construction methods should be considered on the site to minimise the impact of floodwaters directly affecting any buildings and provide occupants time to take steps to protect contents if necessary.

Access to the site is provided via Hurst Road, which is shown to be located outside of the flood outline for the 1% (1 in 100 year) annual probability flood event including an allowance for climate change. Safe access/egress is therefore considered to be achievable for this site. This should be confirmed as part of a site specific FRA.

In line with the National SuDS Standards for previously developed sites such as this, runoff rates and volumes should be constrained to a value as close as is reasonably practical to the greenfield runoff rates and volumes, but must not exceed the rate or volume from the development site prior to redevelopment.

Where it is not possible to achieve these required standards, Elmbridge BC and SCC will require suitable evidence (e.g. drainage assessment and modelling) to demonstrate why such betterment cannot be achieved and the runoff volume must be discharged at a rate that does not adversely affect flood risk.

Sources 8 and 9 suggest that the development site is likely to suffer very significant constraints in the widespread use of infiltration SuDS and therefore the use of attenuation SuDS should be maximised. This is especially in the areas where the water table is <3m below the ground surface. In the areas where the water table is 3-5m below the ground surface, there may be opportunities for bespoke infiltration SuDS.

Further confirmation of depth to the water table will be required as part of site investigations in order to inform the SuDS design for this site.

A Flood Warning and Evacuation Plan should be prepared for the site detailing how flood warning will be provided, what will be done to protect development and contents, how the safety of occupants and access to/from the development will be ensured.

The site is covered by the Environment Agency Flood Warning Areas for the ‘River Mole at Esher and East Molesey’, as the Dead River is a tributary of the River Mole. Occupants of the site should ensure they are signed up to receive flood warnings associated with the watercourses in this area.

Elmbridge BC has designated primary rest centres in East Molesey centre (Bishops Fox Way) and Walton centre (Manor Road) which may be operational during flooding, dependent upon the type and extent of flooding in the area. The Multi Agency Flood Plan should be consulted for further information regarding the use of this centre.
1) DEVELOPMENT DESCRIPTION AND LOCATION

<table>
<thead>
<tr>
<th>Area</th>
<th>0.67 hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settlement Area</td>
<td>Cobham, Oxshott, Stoake D’Abernon and Downside</td>
</tr>
</tbody>
</table>

Topography

The site is on the edge of the River Mole floodplain at approximately 20 -21.2mAOD. To the east of the site, the land gradually rises towards Fairmile and Oxshott, located at 40-70mAOD.

Geology

The area local to the site is underlain by superficial deposits of Taplow Gravel Formation (Sand & Gravel). The bedrock underneath is Bagshot Formation (Sand).

Aquifer Type

The superficial deposits are classified as a principal aquifer. According to EA definitions, a principal aquifer is defined as having intergranular permeability, can provide a high level of water storage, can support water supply and/or river baseflow on a strategic scale.

The underlying bedrock is classified as a secondary A aquifer. An important factor which influences this classification in Elmbridge is the limited thickness of the layers, in particular the Bagshot Formation.

Groundwater Vulnerability Classification and Source Protection Zone

The superficial deposits in the area local to the site correspond to a risk vulnerability of major aquifer high and intermediate.

There are no SPZs within the Settlement Area in which the site is located.

Main Rivers

The River Mole is located 250m west of the site.

Ordinary Watercourses

The Environment Agency Detailed River Network does not identify any ordinary watercourses local to the site.

2) ASSESS FLOOD RISK

Flooding from Rivers

The modelled flood outlines show that the majority of the site is located within Flood Zone 2, as follows:

- **Flood Zone 1 (present day):** 0.03 hectares (5%)
- **Flood Zone 2 (present day):** 0.64 hectares (95%)
VERMONT EXCHANGE, PORTSMOUTH ROAD

Historic Records

The site is not shown to lie within the Environment Agency Historic Flood Map outline associated with fluvial flooding (pink dashed outline). Of the records of specific historic flood incidents provided by EBC and the Environment Agency for this SFRA, there are no records local to the site. However Cobham has been identified as an area susceptible to flooding associated with the Middle Mole, most recently experiencing flooding in December 2013.

Flood Defences

The Environment Agency AIMS dataset identifies River Mole is not formally defended in this location. The AIMS dataset identifies high ground adjacent to the watercourse along the reach near the site.

Flooding from Land

The Environment Agency uFMfSW identifies parts of the site to be at High risk of flooding from surface water.

Historic Records

SCC has identified two locations within the local area that are known ‘wetspots’ which are susceptible to surface water flooding; Mill Road to the south east of the site and Tartar Road to the east of the site.

Flooding from Groundwater

The main built-up area around Cobham itself is classed as low risk i.e. limited potential for groundwater flooding to occur. This area coincides with the Bagshot Formation outcrop area and where the water table is >5m below the ground surface.

Site investigations will be required on the site to determine the precise conditions and the depth to the groundwater table.

Flooding from Sewers

During the last 10 years there have been no recorded incidents of sewer flooding (either internal or external) within the post code area in which the site is located.

Reservoirs, canals, other artificial sources

The Environment Agency dataset ‘Risk of Flooding from Reservoirs’ identifies that the area within which the site lies is not at risk of inundation should any large reservoir fail and release the water it holds.

3) PROPOSED DEVELOPMENT

Proposed Use

- Housing

<table>
<thead>
<tr>
<th>Vulnerability</th>
<th>Table 4-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>More Vulnerable</td>
<td></td>
</tr>
</tbody>
</table>

4) AVOID FLOOD RISK

Sequential Test

Elmbridge BC should be consulted regarding the status of the Sequential Test. Where the Sequential Test has not been undertaken for the site, refer to Section 4.3 for guidance regarding applying the Sequential Test to individual applications.

<table>
<thead>
<tr>
<th>Exception Test</th>
<th>Table 4-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>More Vulnerable</td>
<td></td>
</tr>
</tbody>
</table>

Development Layout and Sequential Approach

Measures to manage surface water on the site should be considered early in the site masterplan to enable inclusion of attenuation SuDS where possible. Natural ground levels should be considered when designing the layout of the site to ensure that low-lying areas are set-aside for attenuation purposes and more vulnerable elements of development (residential dwellings) are located away from areas at risk of localised surface water ponding.

5) MANAGE AND MITIGATE FLOOD RISK

Flood Resistance

Flood resistant construction methods should be considered on the site to minimise the impact of floodwaters directly affecting any buildings and provide occupants time to take steps to protect contents if necessary.

Safe Access / Egress

Access to the site is provided via the A307 Tartar Hill. In the event of widespread flooding associated with the River Mole, a dry route away from the site is likely to be available along Tartar Hill towards the higher ground on Fairmile and Oxshott. This should be confirmed as
Surface Water Management

In line with the National SuDS Standards for previously developed sites such as this, runoff rates and volumes should be constrained to a value as close as is reasonably practical to the greenfield runoff rates and volumes, but must not exceed the rate or volume from the development site prior to redevelopment.

Where it is not possible to achieve these required standards, Elmbridge BC and SCC will require suitable evidence (e.g. drainage assessment and modelling) to demonstrate why such betterment cannot be achieved and the runoff volume must be discharged at a rate that does not adversely affect flood risk.

Sources 8 and 9 suggest that the water table may be 3-5m below the ground surface and there may be opportunities for bespoke infiltration SuDS at this site. Further confirmation of depth to the water table will be required as part of site investigations in order to inform the SuDS design for this site.

<table>
<thead>
<tr>
<th>Section 5.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure B6</td>
</tr>
</tbody>
</table>

Flood Warning and Evacuation Plan

It is recommended that residents of the proposed development on this site prepare a personal Flood Response Plan detailing the course of action to take before, during and after a flood event.

The site and local area is covered by the Environment Agency Flood Warning Areas for ‘River Mole at Stoke D’Abernon, Cobham and South Hersham’. Residents of the site should ensure they are signed up to the Environment Agency Flood Warning system.

Elmbridge BC has a designated primary rest centre in Cobham centre, on Oakdene Road which may be operational during flooding, dependent upon the type and extent of flooding in the area. The Multi Agency Flood Plan should be consulted for further information regarding the use of this centre.

<table>
<thead>
<tr>
<th>Section 5.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure B9</td>
</tr>
</tbody>
</table>